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Network for 3D Human Shape Reconstruction

**Supplementary Material**

This supplementary material presents details that are not included
in the main manuscript due to space constraints. Firstly, in Section 1,
we provide details of our proposed network structure. Next, in
Section 2, we present the training data used by different approaches
that mentioned in the paper. Then, in Section 3, we give a detailed
description of the loss functions that we use. Finally, in Section 4,
we show additional experimental results for comparison.

1 NETWORK ARCHITECTURE
Figure 1 shows the detailed architectures of DC-GNet. Our network
takes the initial human mesh with the size of 𝐵 ×𝑀0 × 3 as input
and the output is the processed human mesh with the same size.
Here, ‘GN’, ‘FC’ and ‘GAT’ are short for Group Normalization [27],
Fully Connected layer and Graph Attention [26], respectively. 𝐵 is
the batch size and𝑀𝑖 is the node number of the 𝑖-th level for graph
resolution, with𝑀0 = 1723,𝑀1 = 430,𝑀2 = 107,𝑀3 = 26,𝑀4 = 4,𝑀5
=1. Moreover, ‘GCN unit’ is composed of a Group Normalization
operation with ReLU activation and a Graph Convolution layer [15].

2 TRAINING DATA
As we mentioned in the Section 5.5, different training data are used
by various methods. In this section, we give a detailed description
of the training data, and comparison in Table 1. We first describe
the datasets that we use.

Human3.6M. Human3.6M [10] is an indoor dataset with 3D
annotations. It consists of several subjects performing actions like
“Direction", “Sitting" and “Waiting". Adhering to the typical set-
ting [13], we use the subjects S1, S5, S6, S7 and S8 for training,
and we report the results on subjects S9 and S11. Noted that, the
dataset is collected with a motion capture system, and there is no
3D mesh ground-truth. As a result, we use pseudo-groundtruth
from MoSh [21], following previous works [13, 17, 18]. We present
results with two popular protocols (P1 and P2, as defined in [13])
and two evaluation metrics (MPJPE and Reconstruction error, as
defined in [30]). COCO. COCO [20] is one of the most widely used
2D datasets. It contains considerable poses with various scales in
natural environments. We use this dataset for training, which is
processed by Kolotouros et al. [17].

UP-3D.UP-3D [19] is a dataset created by employing SMPLify [5]
on well-designed 2D benchmarks, like FashionPose [8] andMPII [3].
It comprises images with high-quality 3D shape fits that are selected
by human annotators. Following [18], we use this dataset for train-
ing.

MPI-INF-3DHP. MPI-INF-3DHP [23] is a dataset that contains
3D pose ground-truth captured with multi-view cameras under
both indoor and outdoor environments. The ground-truth 3D pose
seems to be less accurate due to nomarkers are used. Following [17],
we use this dataset for training and we report the results on it.
Noted that, in addition to MPJPE, we further report Area Under the

Curve (AUC) over a range of Percentage of Correct Keypoints (PCK)
thresholds [23].

LSP. LSP [11] is a standard 2D dataset. We use this dataset that
processed by Kolotouros et al. [17] for training.

MPII.MPII [3] is a 2D in-the-wild dataset. We use this dataset
that processed by Kolotouros et al. [17] for training.

Then we will introduce the related datasets that are used by
other methods.

LSP-extended. LSP-extended [12] is a 2D dataset that contains
10,000 images

CMU. CMU [9] motion capture dataset consists of 2605 motions
of about 140 people performing various actions.

PosePrior. PosePrior [1] is a dataset used for learning pose-
dependent joint angle limits which formulate a prior for the human
pose.

PennAction. PennAction [29] dataset contains 2326 video se-
quences and covers 15 different actions. Each video involves an
action class label and human joint annotations.

InstaVariety. InstaVariety [14] is an in-the-wild dataset consist
of 28272 videos downloaded from Instagram.

PoseTrack. PoseTrack [2] used for single-frame pose estimation,
multi-person pose estimation, and multi-person pose tracking is
extended from the MPII dataset. It provides more than 500 video se-
quences with over 22000 labeled frames and over 150000 annotated
poses.

AMASS.AMASS [22] is a large 3D humanmotion capture dataset
that contains 40 hours of motion data,344 topics, and more than
11,000 actions.

Kinetics-400. Kinetics-400 [6] is a large-scale and high-quality
dataset that contains 400 human action classes, each action class
covering 600 video clips.

3 LOSS FUNCTIONS
We use three loss functions to train our network.

Vertex Loss. Since we aim to regress the mesh of human body,
a vertex-wise 𝐿1 loss is applied between the estimated and ground
truth shape:

L𝑣𝑒𝑟𝑡𝑒𝑥 =

𝑁∑
𝑖=1

∥ 𝑦𝑖 − 𝑦𝑖 ∥1, (1)

where 𝑦𝑖 ∈ R3 is the ground truth vertex and 𝑦𝑖 ∈ R3 is the pre-
dicted vertex.

Joint 3D Loss. Additionally, we include joint-wise loss for fur-
ther aligning mesh with keypoints. We regress the 3D keypoints
from the estimated mesh. Then the loss can be formulated as:

L3𝑑 =

𝐷∑
𝑖=1

∥ 𝐽3𝐷𝑖
− 𝐽3𝐷𝑖

∥1, (2)
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Figure 1: Detailed architecture of DC-GNet. Here, ‘GN’, ‘FC’ and ‘GAT’ are short for GroupNormalization [27], Fully Connected
layer and GraphAttention [26], respectively. 𝐵 is the batch size and𝑀𝑖 is the node number of the 𝑖-th level for graph resolution,
with𝑀0 = 1723,𝑀1 = 430,𝑀2 = 107,𝑀3 = 26,𝑀4 = 4,𝑀5 =1.Moreover, ‘GCNunit’ is composed of a GroupNormalization operation
with ReLU activation and a Graph Convolution layer [15].

Table 1: The datasets used by different approaches for training when evaluated on MPI-INF-3DHP.

Datasets HMR [13] CMR [18] SPIN [17] VIBE [16] DecoMR [28] Ours
Human3.6M [10]

√ √ √ √ √ √

UP-3D [19]
√ √ √

MPI-INF-3DHP [23]
√ √ √ √

COCO [20]
√ √ √ √

LSP [11]
√ √ √ √

LSP-extended [12]
√ √

MPII [3]
√ √ √ √

CMU [9]
√

PosePrior [1]
√

PennAction [29]
√

InstaVariety [14]
√

PoseTrack [2]
√

AMASS [22]
√

Kinetics-400 [6]
√

Table 2: Comparison with state-of-the-art methods onMPI-INF-3DHP dataset. The numbers are PCK, AUC andMPJPE in mm.
Best results are in bold. ★ indicates methods that output only 3D joints.

Method Absolute Rigid Alignment
PCK↑ AUC↑ MPJPE↓ PCK↑ AUC↑ MPJPE↓

★Mehta et al. [23] (3DV’17) 75.7 39.3 117.6 - - -
★VNect [24] (TOG’17) 76.6 40.4 124.7 83.9 47.3 98.0
HMR [13] (CVPR’18) 72.9 36.5 124.2 86.3 47.8 89.8
CMR [18] (CVPR’19) 56.7 24.3 155.2 85.9 47.7 85.5
SPIN [17] (CVPR’19) 76.4 37.1 105.2 92.5 55.6 67.5
DecoMR [28] (CVPR’20) - - 102.0 - - 65.9
DC-GNets 80.4 40.7 97.2 93.8 58.8 62.5
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Table 3: Comparison with state-of-the-art methods on
3DPWdataset. Thenumber ismean reconstruct error inmm.
Best results are in bold.

Method Reconst.Error
HMR [13] (CVPR’18)* 81.3
CMR [18] (CVPR’19)* 70.2
Arnab et al. [4] (CVPR’19) 72.2
SPIN [17] (CVPR’19) 59.2
Sun et al. [25] (ICCV’19) 69.5
DecoMR [28] (CVPR’20 61.7
DC-GNet 59.1

where 𝐽3𝐷 ∈ R𝐷×3 is the regressed 3D keypoints, 𝐽3𝐷 ∈ R𝐷×3 is
the ground truth 3D keypoints, and 𝐷 is the predefined number of
keypoints in the skeleton.

Joint 2D Loss. Similarly, we implement joint-wise loss in the
2D space. By simply projecting 3D joints on the image plane, we
formulate this loss as:

L2𝑑 =

𝐷∑
𝑖=1

∥ 𝐽2𝐷𝑖
− 𝐽2𝐷𝑖

∥1, (3)

where 𝐽2𝐷 ∈ R𝐷×2 is the projected 2D keypoints, and 𝐽2𝐷 ∈ R𝐷×3

is the ground truth 2D keypoints.
Finally, the complete training objective is:

L = L𝑣𝑒𝑟𝑡𝑒𝑥 + L3𝑑 + L2𝑑 (4)

4 ADDITIONAL RESULTS
4.1 Quantitative Analysis
First, we provide a detailed comparison on MPI-INF-3DHP in vari-
ous metrics in Table 2. Our DC-GNet outperforms previous state-
of-the-art methods in all metrics, which shows the priority of our
proposed approach.

Then, in Table 3 we present a comparison with other approaches
on 3DPW dataset, which is an in-the-wild dataset with 3D pose
and mesh ground-truth. It leverages IMU sensors to obtain accurate
pose and shape annotations under complex scenes. Following the
previous works [7, 17], we only perform an evaluation with the test
set. The mean reconstruction error is reported for comparison. Note
that, we outperform all compared approaches and do not include
the training data of LSP-extended as SPIN. Moreover, considering
to combine our approach with the in-the-loop optimization in SPIN
may further boost the performance [28].

4.2 Qualitative Analysis
In this section, we provide more qualitative results in Figure 2.
Several datasets are leveraged for evaluation, including LSP, MPII,
COCO, Human3.6M, 3DPW and MPI-INF-3DHP.
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Figure 2: Additional qualitative results. LSP (row 1), MPII (row 2), COCO (row 3), H36M (row 4), 3DPW (row 5), MPI-INF-
3DHP (row 6).
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