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ABSTRACT
In this paper, we aim to reconstruct a full 3D human shape from
a single image. Previous vertex-level and parameter regression
approaches reconstruct 3D human shape based on a pre-defined
adjacency matrix to encode positive relations between nodes. The
deep topological relations for the surface of the 3D human body
are not carefully exploited. Moreover, the performance of most
existing approaches often suffer from domain gap when handling
more occlusion cases in real-world scenes.

In this work, we propose aDeepMesh RelationCapturingGraph
Convolution Network, DC-GNet, with a shape completion task for
3D human shape reconstruction. Firstly, we propose to capture deep
relations within mesh vertices, where an adaptive matrix encoding
both positive and negative relations is introduced. Secondly, we
propose a shape completion task to learn prior about various kinds
of occlusion cases. Our approach encodes mesh structure frommore
subtle relations between nodes in a more distant region. Further-
more, our shape completion module alleviates the performance
degradation issue in the outdoor scene. Extensive experiments on
several benchmarks show that our approach outperforms the pre-
vious 3D human pose and shape estimation approaches.
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Figure 1: Illustration of different strategies to reason local
structure. (a) Previous popular approaches are based on a
pre-defined adjacency matrix that encodes only positive re-
lations with physically connected nodes. (b) Our approach
learns deep relations (i.e., positive and negative) between
nodes in a more distant region. The inference node, posi-
tively related node and negatively related node are shown in
the black, red and blue circle, respectively. The solid line de-
notes a positive relationship, while the dashed line denotes
a negative relationship.

1 INTRODUCTION
3D human pose and shape estimation is a fundamental yet chal-
lenging task in computer vision. There are plenty of approaches
proposed to accurately capture 2D pose and even 3D joint loca-
tions [9, 26, 43, 46, 57, 58]. Since sparse joints alone cannot provide
enough information for analyzing humans [22], incremental recent
works interest in recovering the 3D mesh of a human body, where
the 3D surface is defined.

To obtain 3D mesh for a human being in an image, optimization-
based approaches generate a reliable human body fitting [5, 25].
Unfortunately, their slow inference speed and sensitivity to ini-
tialization have shifted the focus to regression-based approaches,
which directly regresses mesh coordinates [7, 22, 51] or the pa-
rameters [17, 33, 37] of the human body model (e.g., SCAPE [2]
and SMPL(-X) [29, 35, 40]). Although regression-based methods
achieve clear performance improvement in constrained environ-
ments, there are still limitations hinders better performance under
the real scenario.

Firstly, most of existing regression-based approaches including
vertex-level regression approaches [7, 22] and parameter regression
approaches [17, 37] are based on a fixed adjacency matrix to encode
the inherent shape nodes relations, which ignores deep relations
between shape nodes and focus only on physically connected nodes,
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Figure 2: Visualization of the different adjacency matrix. (a)
A pre-defined adjacencymatrix with encoding only positive
relations between physically connected nodes. (b) Our adja-
cency matrix learns subtle relations (i.e., positive and nega-
tive) between nodes in a more distant region.

as shown in Figure 1(a). As a result, models often can not fully
explore the spatial relations within the human body, which owns a
highly related structure. Previous works [8, 57] attempt to explore a
joint-to-joint topological structure for skeleton joints in the 3D pose
estimation task. However, compared to the 3D pose estimation task
with skeleton representation, a full 3D human shape reconstruction
task needs to infer node-to-surface relations rather than a simple
joint-to-joint. Thus, these approaches cannot be applied directly to
the 3D shape estimation. To the best of our knowledge, exploiting
the deep topological relations for the surface of the 3D human body
is an unexplored yet important problem to the current 3D human
shape reconstruction approaches.

Secondly, the full human body information is usually difficult
to obtain in real scenarios due to various occlusions. Existing 3D
annotation datasets that are collected in the limited indoor environ-
ment not carefully simulate such cases of body partially missing,
which forms a gap issue of appearance domain (i.e., the performance
degradation in real-world scenes). Therefore, the generalization
of existing shape reconstruction approaches trained on indoor 3D
data are often poor when handling with more occlusion cases in
real-world scenes, resulting in the performance degradation.

In this paper, to alleviate the above issues, we propose a Deep
Mesh Relation Capturing Graph Convolution Network, namely
DC-GNet, with a shape completion task. Firstly, to capture deep re-
lation among mesh vertexes of body shape, we impose an adaptive
adjacency matrix to learn both positive and negative relationships
between nodes in a more distant region, as shown in Figure 2(b).
Base on this learnable matrix, our network can aggregate subtle
information from not only physically connected nodes but also
nodes with long-distance, as shown in Figure 1(b). Secondly, we
propose a shape completion task to alleviate the gap issue of ap-
pearance domain. Specifically, we first fabricate artificial holes on
the surface of the training body shape data. Then, we force the
network to recover a full body shape to learn prior about various
kinds of human body part missing case. The overview of our ap-
proach is shown in Figure 3. Concretely, our network is started
with the initial estimation, which is the feature extraction stage. In
the pretrain process, the image features are inputted into DC-GNet
with the proposed shape completion task, where the network learns
the prior for occlusion cases. This network is further trained in the
main inference process for the 3D human shape estimation.

Extensive evaluated experiments are conducted on several pub-
lic benchmarks [14, 31], and the results show that our proposed
approach outperforms the previous state-of-the-art 3D pose and
shape estimation methods. Moreover, qualitative results on in-the-
wild datasets [1, 27] show that our approach has learned better
representation and generalization ability through making better
use of the topology structure of the human body.

We summarize our contributions as follows:

• We propose a Deep Mesh Relation Capturing Graph Convo-
lution Network, DC-GNet, to reconstruct 3D human shape
from a single RGB image. It is the first attempt to learn deep
relations between nodes among human mesh vertices and
consider reasoning from more than partial structure, which
boosts the model capturing complex local deformation.

• We first propose a shape completion module as an auxiliary
task to alleviate the appearance domain gap issue between
indoor and outdoor scenes, and thus our model can bene-
fit from the rich indoor data source to learn the inference
paradigm that can be well applied in natural environments.

• Extensive experimental results across several benchmarks
demonstrate the effectiveness of exploring deep relations
among mesh vertices, through comparing with the previous
state-of-the-art 3D human shape reconstruction methods.

2 RELATEDWORK
Although numerous approaches have been proposed to boost the
topic of 3D pose estimation in the form of a skeleton in the last few
years [23, 42, 45, 59, 60, 62], we will focus on closely-related works
reconstructing the whole shape and pose in this Section [11, 21, 47].

2.1 3D Human Pose and Shape Estimation
Instead of a skeleton, recovering the shape of human body is a
more challenging task. Bogo et al. [5] firstly introduced the fully
automatic model-based approach, SMPLify, to estimate 3D human
shape and pose from 2D pose by fitting a classical human body
model SMPL. After that, Lassner et al. [25] applied SMPLify for
building a dataset with fairly successful 3D fits. Beyond SMPLify,
many different model-based approaches were proposed to explore
including adversarial prior [17, 20], temporal information [3, 18], or
even dealing with multiple humans [15, 54]. More recently, instead
of predicting parameters of the model, model-free methods that
directly regress each vertex were proposed to avoid representation
issues [30, 37]. Venkat et al. [50] captured the local deformation
by learning the “implicitly structure" of human mesh. Similarly,
Kolotouros et al. [22] directly regressed the vertices of a template
mesh to explore the topological structure explicitly. Moon and
Lee [32] proposed an image-to-lixel network tomodel the prediction
uncertainty for each mesh vertex. More interesting, many works [4,
12, 61] tried to obtain clothed mesh.

2.2 Graph Convolution Network for 3D shape
Reconstruction

Recently, there has been a surge of approaches considering Graph
Convolution Network(GCN) for capturing the graph structure of
mesh, due to the graph-like nature of human mesh. Choi et al. [7]



Figure 3: Overview of DC-GNet. The workflow contains three parts, a feature extraction stage to generate the initial graph
from a single image, a pretrain process to learn an adaptive graph with a shape completion task and the main inference phase
to reconstruct the 3D mesh.

recovered 3D mesh from the 2D input with GCN in a coarse-to-
fine fashion. Kolotouros et al. [22] explored mesh structure and
leveraged spatial locality via applying GCN to directly regress the
vertices of the SMPL model. Hugo et al. [13] proposed to gener-
ate 3D clothed human with graph convolution variational Auto-
Encoder (GCVAE). Simultaneously, some works [10, 50] intended to
deal with mesh vertices as point clouds for capturing deformation.

Similarly, we also adopt GCN to process the mesh structure.
Different from previous approaches, instead of simply applying
convolution operation to aggregate information from direct neigh-
bors, we incorporate an adaptive adjacent matrixto obtain local
structure from both physically connected nodes and distant ones
with deep relations.

2.3 Relations Capture via Learnable Adjacency
Matrix

The adjacency matrix is a necessary component in GCN. In the 3D
shape Reconstruction task, existing regression-based approaches
usually use a pre-defined adjacency matrix, in which only posi-
tive relations between physically connected nodes are encoded.
Such a pre-defined adjacency matrix is not able to capture com-
plex local surface deformation, as shown in Figure 1(a). Replacing
a pre-defined adjacency matrix with learnable ones is a common
strategy in the other GCN-based computer vision applications, such
as skeleton estimation [8, 57] or action recognition task [44, 53].
These works use different updating strategies to learn adjacency
matrix for different purposes. Zhao et al. [57] learns adjacent ma-
trix for describing subtle semantic relations within human skeleton
joints. Doosti et al. [8] keeps the connectivity of the graph struc-
ture in joint hand and object pose estimation task. Against the
action recognition task, Yan et al. [53] captures the body skeletons
dynamics information to meet the specific demands in skeleton
modeling. Shi et al. [44] learns the topology structure of the graph
and skeleton samples for the flexibility of model.

These strategies only focus on joint-to-joint relations, which
can not capture the node-to-surface relations existing in a full
3D human shape reconstruction task. In this paper, against the 3D
shape reconstruction, we first propose a novel updating strategy for
the learnable adjacency matrix to explore node-to-surface relations.

3 PROBLEM SETUP
Our input is a cropped image, which is centered around a person.
For each input image, an image-based convolutional network is
applied as a feature extractor and outputs a 2048-D feature vector
for every single vertex in the graph. Our network is started with
the initial estimation, which is the feature extraction stage shown
in the Figure 3.

Previous approaches had already adopted GCN to process graph-
like human mesh. The network is composed of basic graph convo-
lution operations [19], which is defined as:

𝑿𝑜𝑢𝑡 = 𝜎 (𝑨𝑿𝑖𝑛𝑾 ), (1)

where 𝑨 ∈ R𝑁×𝑁 is a pre-defined adjacency matrix of the graph,
𝑿𝑖𝑛 = {𝑥𝑖 }𝑁𝑖=1 ∈ R𝑁×𝑘 is the input feature matrix, 𝑾 ∈ R𝑘×ℎ is
the trainable weight matrix, 𝑿𝑜𝑢𝑡 ∈ R𝑁×ℎ is the output feature
matrix, and 𝜎 is the activation function. Specifically, 𝑁 is nodes of
the input graph, 𝑘 and ℎ are the input features and output features
for each node, separately.

The graph convolution described in Eq. (1) is calculated based on
a pre-defined adjacency matrix, which only encodes positive rela-
tions between physically connected nodes. As a result, the complex
local structure can not be carefully captured.

4 PROPOSED APPROACH
In this Section, we present our approach. First, in Subsection 4.1, we
describe the proposed network for obtaining effectively local struc-
ture information. Next, in Subsection 4.2, we describe our proposed
shape completion task that alleviates the gap issue of appearance



Figure 4: Visualization of the mesh from different layers in the decoder part of the U-Net. The refining process generates the
final prediction from a coarse graph by adding nodes (the green hollow circle).

domain. Finally, Subsection 4.3 present the loss functions that we
used for training.

4.1 Relations Capture for the 3D Shape
Reconstruction

Instead of using a pre-defined adjacency matrix, we propose to use
an adaptive adjacency matrix to learn subtle relationships between
nonadjacent nodes. To achieve this, we rewrite Eq. (1) as:

𝑿𝑜𝑢𝑡 = 𝜎 (�̂�𝑿𝑖𝑛𝑾 ) . (2)

where �̂� = 𝑨 + 𝑰 is a learnable adjacency matrix. 𝑰 is the identity
matrix. Based on Eq. (2), our network is able to infer local structure
from nodes with subtle relations in a more distant region. Specifi-
cally, not only relations between nodes belong to the same semantic
part (e.g., nodes on arm and elbow that belong to the same limb
can be leveraged for inference), but nodes with far distance (e.g.,
one node on the left elbow can be related to the node on the right
elbow) are encoded into the network. Moreover, following [6], we
introduce a non-local block [52] to facilitate a holistic processing
of the full body.

By training the network with Eq. (2), we can obtain a learnable
adjacency matrix. However, such stacking of the convolution opera-
tion with adaptive adjacency matrix requires the expensive training
computational cost. Therefore, we design a classical hierarchical U-
shaped network architecture including encoder and decoder parts,
to simplify the calculations and achieve our shape reconstruction
pipeline.

In the encoder part, we introduce sampling operations [39] to
simplify the calculations. The process of the encoder part can be
formulated as:

𝒀𝑙 = 𝑓 (𝒀𝑙−1), (3)

where 𝒀𝑙 ∈ R�̃�×ℎ is the processed feature matrix with �̃� nodes, and
𝑓 demonstrates a fully-connected layer. 𝑙 ∈ {1, 2, ...𝑙−1, 𝑙, 𝑙+1, ..., 𝐿−
1, 𝐿} is the 𝑙-th layer of the network. Indeed, by downsampling the
mesh data with a pre-defined factor, the high redundancy in the
original scale and memory requirements are both dramatically
reduced.

In the decoder part, we combine the features to boost the un-
derstanding of human body in a coherent way. Similarly, we can
denote the decoder part as:

𝒀𝑙+1 = 𝑓 ( [𝑓 (𝒀𝑙 ); 𝑓 (𝑚(𝑌1, ..., 𝑌𝑙 ));𝑌𝐿−𝑙 ]), (4)

Figure 5: Illustration of the proposed shape completion task.
With an initialmesh as input, we fabricate artificial holes on
the surface of mesh. In order to recover the missing infor-
mation, the network is forced to reason from the neighbor-
hood in a more distant region. Moreover, we highlight the
same part during different phases to show the effectiveness
of this module.

where𝑌𝑙+1 is a linear combination of above three parts,𝑚(𝑌1, ..., 𝑌𝑙 ) =⋃𝑙
𝑙=1 𝜎 (𝑬𝑙𝒀𝑙𝑾𝑙 ) denotes the feature obtained from our feature fu-

sion module, and 𝑌𝐿−𝑙 is the previous feature in each level of the
encoder part in symmetrical module of the decoder part. More
specifically,

⋃
represents concatenation connection, 𝑬𝑙 ∈ R�̃�×�̃�

is the calculated attention coefficients matrix and 𝑾𝑙 ∈ Rℎ×𝑝 is
a shared linear transformation towards 𝑝 features for each node,
which are detailed described in [49].

Essentially, the modeling of the decoder part formulated by
Eq. (4) explicitly fuse multi-level topology information, which al-
leviates the semantic gap and different spatial resolution [38]. In
the process of the decoder part, the body shape is gradually refined
when more features are fused, as visualized in Figure 4.

4.2 Shape Completion Task
Due to various complex occlusions (e.g.,self-occlusion or be shel-
tered) in an in-the-wild scenario, the human body part information
is often missing. Since the training data are collected from simple
human actions in a clear indoor environment, the information miss-
ing issue is rare. In order to enable the network to learn a generic
adjacency matrix for various occlusion cases, we propose a shape



completion task in which a mask off and a reconstruction part are
included, as shown in Figure 5.

In the mask off part, we simulate the occlusion cases by fab-
ricating artificial holes on the surface of the initial human mesh.
Specifically, we randomly mask the partial mesh information of a
given full human mesh, which can be formulated as

�̂�𝑖𝑛 = 𝑿𝑖𝑛 ·𝑴, (5)

where �̂�𝑖𝑛 denotes a masked human mesh. 𝑴 ∈ R𝑁×𝑘 is a matrix
of ones except 𝑐 row set zeros, and randomly shuffled before dot
product.

Then, to force the network to recover the missing information
for the masked human mesh,

we replace the 𝑿𝑖𝑛 in Eq. (2) as a marked human mesh �̂�𝑖𝑛 ,
𝑿𝑖𝑛 = 𝜎 (�̂��̂�𝑖𝑛𝑾 ) . (6)

Note that in Eq. (6), the output of the network is settled as the initial
full human mesh 𝑿𝑖𝑛 .

4.3 Loss Functions
We use three loss functions to train our network. We first calcu-
late per-vertex 𝐿1 loss between the estimated and ground truth
shape, which is denoted as L𝑣𝑒𝑟𝑡𝑒𝑥 . Additionally, we include joint-
wise loss for further aligning mesh with keypoints. Specifically, we
implement 𝐿1 losses between the projected coordinates and the
ground truth keypoints in 2D and 3D space (𝐽2𝐷 and 𝐽3𝐷 ). Finally,
the complete training objective is:

L = L𝑣𝑒𝑟𝑡𝑒𝑥 + L3𝑑 + L2𝑑 (7)
We provide a more detailed description of the loss function in

the supplementary material.

5 EXPERIMENT
In this Section, we concern with the experimental analysis of the
proposed approach. First, we present the datasets that we use for
evaluation (Section 5.1) and the implementation details of the pro-
posed pipeline (Section 5.2). Then, we discuss the comparison ap-
proaches (Section 5.3) and ablation studies (Section 5.4). Finally,
comparison with the-state-of-the-art approaches (Section 5.5) and
qualitative analysis (Section 5.6) are provided.

5.1 Datasets and Evaluation Metrics
Datasets. In this paper, we present extensive experiments of our ap-
proach on several standard benchmarks including Human3.6M [14],
UP-3D [25], MPI-INF-3DHP [31], COCO [27] and LSP [16]. For
training, we apply benchmarks with 3D annotations, including Hu-
man3.6M, UP-3D and MPI-INF-3DHP. Additionally, similar to [21],
we incorporate other 2D datasets, i.e., COCO and LSP. For evalua-
tion, we use MPI-INF-3DHP and Human3.6M. For the evaluation
on Human3.6M, two popular evaluation protocols can be found.
The first one, denoted as P1, includes the subjects S1, S5, S6, S7 and
S8 for training, and the subjects S9 and S11 for testing. The second
protocol, denoted as P2, tests only on the frontal camera with the
same train/test sets. A more detailed description of the datasets can
be found in the supplementary material.

Evaluation Metrics. For the MPI-INF-3DHP and Human3.6M
datasets, following the evaluation in the most approaches [7, 17,

Table 1: Comparison on Human3.6M (Protocol 1 and 2)
of our proposed approach with different components (i.e.,
adaptive adjacency matrix and U-shaped Net, denoted as A
and U separately). The numbers are MPJEP andmean recon-
struct errors in mm. We conduct experiments with several
models using CMR [22] and HMR [17] as the pretrained fea-
ture extractors. Best results are in bold.

Method MPJPE Rec.Error
P1 P2 P1 P2

CMR [22] 77.3 73.5 51.2 49.6
Ours (U) 74.7 71.0 49.0 46.5
Ours (A) 73.4 69.8 49.1 45.5
Ours (A+U) 72.3 68.8 48.5 45.3
HMR [17] 91.2 89.1 61.8 59.5
Ours (U) 89.2 87.2 57.9 55.5
Ours (A) 88.2 85.3 56.3 54.1
Ours (A+U) 87.8 85.1 55.6 53.9

Table 2: Comparison on MPI-INF-3DHP of our proposed
Shape Completion task with different configurations. The
numbers are PCK, AUC, and MPJEP in mm. We conduct ex-
periments with CMR [22] as pretrained feature extractor.
We report results with the different number of nodes that
are masked off. Best results are in bold.

Method Absolute
PCK ↑ AUC ↑ MPJPE ↓

w/o Shape Completion 62.2 25.0 136.2
Mask off - 50 63.3 25.6 134.6
Mask off - 100 64.0 27.9 131.3
Mask off - 200 66.3 30.4 128.5
Mask off - 400 64.6 28.7 129.7

55], we report Mean Per Joint Position Error (MPJPE) and mean
reconstruct error. MPJPE is defined as 3D joint errors, which are
the projected coordinates from mesh data. While mean reconstruct
error is the same calculation with MPJPE but with a rigid alignment.
For MPI-INF-3DHP, in addition to MPJPE and mean reconstruct
error, we further report Area Under the Curve (AUC) over a range
of Percentage of Correct Keypoints (PCK) thresholds [31], which
are also used in many approaches[17, 21, 48].

5.2 Implementation Details
Our model is implemented with PyTorch [34]. As shown in Figure 3,
we first train our network with a shape completion task, and then
in the second step we train the model in an end-to-end fashion.
Noted the network trained with shape completion task shares the
parameters with the model in the main inference process. In each
stage, following [22] we subsample original mesh by a factor of 4
and upsample it back at the end of the network with [39]. For the
training process, we utilize Adam optimizer with a mini-batch size
of 16, where the learning set is set to 3e-4. In the pre-trained pro-
cess, only Human3.6M dataset is used, while in the main inference
process, we first train our model from Human3.6M and UP-3D for



Figure 6: Examples of the learned adjacency matrix. For each column, the images from top-to-bottom correspond to the visu-
alization of the learned matrix, the surface plot of the matrix.

Table 3: Comparison with state-of-the-art models on MPI-INF-3DHP and Human3.6M datasets (P2). The numbers are MPJEP
and mean reconstruct errors in mm, and AUC. DC-GNet achieves a comparable result on Human3.6M dataset and beyond all
state-of-the-art approaches on more challenging in-the-wild MPI-INF-3DHP dataset. “-" means the corresponding results are
not available. † indicates that extra temporal infromation is leveraged. Best results are in bold.

Method MPI-INF-3DHP Human3.6M
AUC ↑ MPJPE ↓ Reconst.Error ↓ MPJPE ↓ Reconst.Error ↓

HMR [17] (CVPR’18) 36.5 124.2 89.8 - 56.8
†HMMR [18] (CVPR’19) - - - - 56.9
†Arnab et al. [3] (CVPR’19) - - - 77.8 54.3
CMR [22] (CVPR’19) 24.3 152.0 83.8 71.9 50.1
†TexturePose [36] (ICCV’19) - - - - 49.7
SPIN [21] (ICCV’19) 37.1 105.2 67.5 - 41.1
DaNet [56] (ACM MM’19) - - - 61.5 48.6
Jiang et al. [15] (CVPR’20) - - - - 52.7
Kundu et al. [24] (ECCV’20) - - - - 48.1
Pose2Mesh [7] (ECCV’20) - - - 64.9 47.0
†VIBE [20] (CVPR’20) - 97.7 63.4 65.9 41.5
DecoMR [55] (CVPR’20) - 102.0 65.9 60.6 39.3
DC-GNet 40.7 97.2 62.5 63.9 42.4

30 epochs and then impose more data (i.e., COCO, MPI-INF-3DHP,
etc.) for greater image diversity. We use a single NVIDIA RTX 2080
Ti GPU for training and our model inference for a single image
takes 55ms (including time (33ms) for feature extractor), which is
nearly real-time.

5.3 Comparison Approaches
Following the common-used comparison setting in the literature [7,
20, 55], we first compare with two recent baselines for regression-
based approaches (the vertex-level regression and parameter re-
gression approaches, i.e. HMR [17] and CMR [22]). As mentioned
earlier, both the above two approaches are based on a pre-defined
adjacency matrix. Moreover, several of recent state-of-the-art meth-
ods [3, 15, 18, 21, 22, 24, 36, 55, 56], are considered in the comparison,
including vertex-level regression approaches [22, 55] and parameter
regression ones [17, 21].

5.4 Ablation Studies
Firstly, to put our approach into perspective, we conduct ablation
studies on our approach. Following the literature [20], we also

use two pre-trained feature extractors CMR [22] and HMR [17],
respectively. We construct three different settings: (a) U-shaped
network without adjacency matrix. (b) Only adaptive adjacency
matrix (without sampling and features fusion operations). (c) U-
shaped network with an adaptive adjacency matrix. These three
settings are denoted as "U", "A", and "U+A" in the comparison. The
ablation experiments results are reported in Table 1, in which the
results are organized into two groups in terms of two different
feature extractors.

Since the adaptive adjacency matrix captures the topological
structure of human body. It significantly improves the reconstruc-
tion performance, as we observed in the Table 1. The proposed
U-shaped network also boosts the performance due to the better
understanding of human body in a coherent way. The best result
is always achieved by “U+A" setting whichever feature extractor
is used. Figure 6 visualizes the learned adjacency matrix. It shows
that deep relations between nodes (i.e., positive and negative) are
encoded.

Moreover, we also study the effectiveness of the proposed shape
completion task. In the experiment, we train different networks



Figure 7: Examples of successful reconstructions. COCO (row 1), H36M (row 2) and MPI-INF-3DHP (row 3).

Figure 8: Examples of erroneous reconstructions. Typical
failure cases may be caused by severe occlusions, rare view-
point, or interactions among multiple people.

with different number of nodes that are masked off on Human3.6M
and UP-3D datasets, and evaluate on MPI-INF-3DHP. The results
are obtained by using CMR [22] as a feature extractor. Since the
different number of masked nodes leads to different performance,
we set the number of masked nodes as 0, 50, 100, 200, 400. As we
clearly observed in Table 2, with the number of masked nodes
increases from 0 to 200, the performance also begins to increase,
which demonstrates the effectiveness of the shape completion task.
We observe degradation occurs when the number of masked nodes
is settled at 400, which may exceed the ability to recover mesh.

5.5 Comparison to State-of-the-Art Results
We report MPJPE and mean reconstruct error of DC-GNet on Hu-
man3.6M, and additionally AUC over a range of 3D-PCK thresh-
olds (150mm) onMPI-INF-3DHP. For the fair comparison, following
the same setting in the literature [20], we use HMR as a feature
extractor pretrained by [21].

We first conduct a comparable result on the challenging in-the-
wild MPI-INF-3DHP dataset. As shown in Table 3, comparing to

the baseline methods, DC-GNet achieves more than 21% (HMR)
and 36% (CMR) improvement on average MPJPE, respectively. Sim-
ilarly, more than 30% (HMR) and 25% (CMR) improvements are
achieved by ours on average reconstruct error. Compared to other
considered approaches, we still achieve the best performance in all
metrics. It seems that our model only achieves sightly performance
improvement than [20] under MPJPE, note that it exploits video
temporal information while we use only a single image.

In the Human3.6M dataset, DC-GNet still shows its superiority.
As shown in Table 3, DC-GNet outperforms the baseline approaches
with a wide margin (more than 25% (HMR) and 15% (CMR) improve-
ment on reconstruction error metric). It seems that our approach is
sightly inferior to approaches[20, 21, 55]. Note that Human3.6M is
an indoor dataset with pre-defined action categories in both train
and test sets. As analyzed by [7], the performance drop (i.e., per-
forms well on Human3.6M while meets degradation on the in-the-
wild dataset) may be attributed to an overfitting issue.

Note that different methods are trained with different training
data. Detailed training data comparisons can be found in the sup-
plementary material. To show the superiority of our approach, we
compare their best results reported in the original literature.

5.6 Qualitative Evaluation
This section presents qualitative evaluations. In the qualitative ex-
periments, following the same strategy in [17, 21, 22], we leverage
Mosh [28] and SPIN [21] to generate pseudo-groundtruth on Hu-
man3.6M and in-the-wild datasets, respectively.

Firstly, we conduct the qualitative results of our approach from
different datasets. The success and failure cases are also reported,
as shown in Figure 7 and Figure 8, respectively. Typical failure cases
may be caused by severe occlusions, rare view-point, or interactions
among multiple people.

Moreover, we further provide a qualitative comparison with the
recent competitive vertex-level regression approaches (i.e., CMR [22]
and DecoMR [55]) and parameter regression approaches [17, 21],
as shown in Figure 9 and Figure 10, respectively.
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Figure 10: Comparison between our approach and other parameter regression methods.

As shown in the Figure 9, compared to vertex-level regression
approaches, DC-GNet generates much more pleasant mesh results
that reconstruct details and retain the whole topological structure.

We further report qualitative comparisons with the parameter
representation,as shown in Figure 10. We also achieve more rea-
sonable reconstruction results. Note that CMR and our approach
are vertex-level regression approaches while they can also be im-
plemented as a parameter regression by using Multi-Layer Percep-
tron (MLP) [41].

More qualitative results can be found in the supplementary ma-
terial.

6 CONCLUSION
The aim of this paper is to explore deep relation among mesh ver-
tices for 3D human pose and shape reconstruction, by encoding
both positive and negative relations. We incorporate these relations
into a graph convolution network with a shape completion module
for complex topological structure learning cross domain. More-
over, the comparison with a series of state-of-the-art approaches
shows the superiority of our approach. More specifically, the exten-
sive experiments conducted on wild datasets demonstrate that the

proposed strategies are crucial to make our approach of practical
use for in-the-wild scene. Future work may explore using denser
cues (e.g., video input or optical flow) and consider extending our
approach for multiple people.
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