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ABSTRACT

Estimating 3D human poses from a single image is an important task in computer graphics. Most model-
based estimation methods represent the labeled/detected 2D poses and the projection of approximated
3D poses using vector representations of body joints. However, such lower-dimensional vector representa-
tions fail to maintain the spatial relations of original body joints, because the representations do not con-
sider the inherent structure of body joints. In this paper, we propose JSL3D, a novel joint subspace learn-
ing approach with implicit structure supervision based on Sparse Representation (SR) model, capturing
the latent spatial relations of 2D body joints by an end-to-end autoencoder network. JSL3Djointly com-
bines the learned latent spatial relations and 2D joints as inputs for the standard SR inference frame. The
optimization is simultaneously processed via geometric priors in both latent and original feature spaces.
We have evaluated JSL3pusing four large-scale and well-recognized benchmarks, including Human3. 6},

HumanEva-I, CMU MoCap and MPII. The experiment results demonstrate the effectiveness of JSL3D.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Estimating 3D human poses from a single RGB image contain-
ing the human activity is a fundamental yet challenging task in
many applications [1], such as virtual reality [2]. Most existing ap-
proaches first use robust 2D detectors [3] to obtain 2D body joints
from the image, and then design a post-processing mapping pro-
cedure to reconstruct 3D pose from these detected 2D joints [4,5].
Since similar 2D body joints may be projected from various 3D hu-
man activities, these approaches are often suffered from the inher-
ent ambiguity of 2D-to-3D mapping.

To alleviate such inference ambiguity, researchers have explored
various solutions, which can be roughly divided into learning-
based and model-based methods. The former directly learns an
end-to-end mapping from 2D to 3D joints, such as deep learn-
ing based approaches [6] [5,7]. Generally, the estimation capabil-
ity of learning-based approaches depends on a large number of
2D-3D paired data for supervised learning. Such weakness can be
eliminated by a model-based method called sparse representation
model [8], which fits a parametric body model to 2D joints based
on geometry prior [9-11].
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During the past few years, several sparse representation (SR)-
based approaches have been proposed to infer the 3D human
pose [4,11,12]. In the standard procedure of SR-based approaches,
the parametric body model is used for the 3D pose estimation. By
integrating given (i.e.,, manual annotations) or detected 2D joints
and 3D geometry priors, the body model parameters are solved by
minimizing the Euclidean Distance in Cartesian space between the
2D pose and the projection of the approximated 3D pose. In partic-
ular, the 2D and 3D poses are described as 2 x N and 3 « N dimen-
sional vector representations of the N body joints, respectively. The
inference procedure in the standard SR-based approach is shown in
Fig. 1(a). Although the effectiveness of the SR-based paradigm in a
constrained environment (i.e., without paired training data), there
are still limitations that hinder better performance in 3D human
pose estimation.

1.1. Limitations and insights

Firstly, vector representations of human pose lose the inher-
ent structure of the original data [13], resulting in the degradation
of estimation performance. Since the human body is highly struc-
tured, the spatial relation of body joints is crucial when recon-
structing the 3D pose from a 2D pose, as shown in Fig. 1(b). In the
figure, each joint has spatial relations with all the other joints in
the human body. Such relations should be consistently preserved
between 2D and 3D spaces. For example, the location of hand joint
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Fig. 1. (a) The inference procedure in the standard SR-based approach. (b) The illustration of maintaining relation consistency between input 2D and output 3D poses. Note

that a known skeleton configuration connects the body joints of the human pose.

j; is between the head and foot joints in the input space, which
also should be precisely preserved in the output space. Previous
SR-based approaches have attempted to keep the original struc-
ture of the input 2D pose by imposing additional configuration
constraints, such as the proportions of limbs [12] and joint angle
limits [14]. However, these strategies only preserve the partial in-
formation of the body joints based on anthropometric knowledge.
To the best of our knowledge, exploiting the deep implicit topo-
logical relations for human pose joints is an unexplored yet impor-
tant problem to the current SR-based 3D human pose estimation
approach.

Secondly, as shown in Fig. 1(a), the standard SR-based approach
implements the optimization procedure in 2D projection space.
The 3D human pose is not inferred directly in the original 3D
space. Since the real projection matrix is unknown, such a mini-
mization procedure based on a single projection space introduces
estimation bias for the resulting 3D inference.

1.2. Our solution

In this paper, we propose a Joint Subspace Learning with Im-
plicit Structure Supervision for 3D Pose Estimation, namely JSL3D,
to alleviate the above issues. Firstly, we propose to capture im-
plicit structure representations from all input 2D joints by leverag-
ing an unsupervised learning-based approach called autoencoder.
Secondly, to keep the consistent implicit spatial relations of body
joints between 2D and 3D spaces, we propose a new joint sub-
space optimization frame based on latent and projection spaces by
integrating the implicit spatial structure, 2D body joints, and 3D
geometric prior.

Figure 2 gives an overview of our solution. Concretely, Firstly,
given an input image, the 2D pose is obtained by a set of body
joints that are labeled manually or detected by a deep convolu-
tional neural network (CNN), as depicted in Fig. 2(a). Secondly, to
estimate the 3D pose from the inputted 2D pose, we firstly ob-
tain an original 3D pose by a sparse linear combination of a set
of basis poses. Then, we project this estimated 3D pose (i.e., ap-
proximated 3D pose by a linear combination) into the 2D space,
as shown in Fig. 2(b). Thirdly, the inputted and projected 2D poses
are fed into an autoencoder network to generate the latent rep-
resentation, as shown in Fig. 2(c). Finally, based on the 2D pose
and its latent representations, we propose a joint subspace learn-
ing strategy that is built upon both the 2D and the latent spaces.
By minimizing loss functions of the joint subspace learning, we
optimize the estimated 3D pose by updating linear combination
coefficients.

In summary, the main contributions of this paper are as follows.

We propose a Joint Subspace Learning with Implicit Structure
Supervision for 3D Pose Estimation, JSL3D, to estimate 3D hu-
man pose from a 2D pose. It is the first attempt to impose im-
plicit structure representations captured by the learning-based
approach into the inference frame of the SR model, which
boosts the SR model capturing complex structure relations of
the input 2D pose.

This paper introduces a novel optimization procedure built on
projection and latent spaces for the 3D human pose estimation,
in which the implicit spatial relation consistency of body joints
between 2D and 3D spaces is enforced.

Compared to existing model-based approaches, JSL3pachieves
superior overall performance across all quantitative experi-
ments on the well-recognized benchmarks. JSL3peven shows
competitive results compared with several representative
learning-based approaches.

2. Related work

The task of 3D human pose estimation from 2D observations
has been extensively studied in the literature. The early works at-
tempt to estimate 3D pose from 2D observations, such as silhou-
ettes [15] and edges [16]. With the release of Motion Capture (Mo-
Cap) datasets [17,18], a large number of 2D-3D human body joint
annotations are available. Based on these MoCap datasets, consid-
erable effort has been devoted to inferring 3D human poses from
the 2D body joints. A typical solution makes use of depth informa-
tion [19] and multi-view images [20] captured in some highly sen-
sored environment. Since sensor devices are difficult to deploy in
real scenarios, it is more realistic to estimate the 3D human pose
simply from a single image [7,9]. In the following, we focus on the
literature of 3D pose estimation from the single view. The related
works to the estimation techniques used in JSL3pare introduced,
especially model-based approaches using SR and the methods cap-
turing human pose structures.

Model-based Approaches

In model-based approaches, 3D human pose estimation is mod-
eled as a parameter prediction problem of a given model, such
as a known articulated skeleton. Recently, sparse representation
(SR) model [8] has been applied for the 3D human pose esti-
mation [9,11,12]. It is an effective tool in capturing complex sig-
nal variability, which has been successfully used in various com-
puter vision tasks, such as image classification [21]. Ramakrishna
et al. [12] first apply SR model to estimate 3D human pose and
propose a matching pursuit algorithm for the prediction of model
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Fig. 2. The overview of the proposed approach. (a) Given an image, we obtain a set of 2D joints which are connected into a 2D pose by a known skeleton configuration. (b)
To estimate the 3D pose for the inputted 2D pose, we firstly represent a 3D pose as a sparse linear combination of learned basis poses. This approximated 3D pose is then
projected into 2D space to produce a projected 2D pose. (c) The inputted and projected 2D poses are fed into an autoencoder network to generate the latent representations,
respectively. (d) Based on 2D poses and their latent representations, we design a joint subspace learning built upon the 2D and the latent spaces. By minimizing loss
functions of the joint subspace learning, linear combination coefficients of the estimated 3D pose are optimized. Note that the figure indicates an iterative process.

parameters. To enhance the work [12], Zhou et al. [9] propose a
convex relaxation algorithm for the solution of model parameters
by imposing the orthogonal constraints. Instead of using ¢;-norm
to measure two 2D pose vectors, Wang et al. [10] apply ¢;-norm
to alleviate the influence of 2D outliers. It is known that using the
projection error alone is not enough to ensure the most desired
3D pose. Jiang et al. [22] adjust the estimated 3D poses directly in
the 3D space. In the work [11], more geometric priors are learned
from the limited diversities of the training set for the 3D human
pose estimation. The above model-based approaches only use the
vector coordinates of 2D joints as input and perform minimization
in a projections space. In contrast to these approaches, we inte-
grate the 2D joint locations and its implicit structure representa-
tions into the optimization frame, in which a minimization objec-
tive function is built on both 2D projection space and other latent
space.

In addition to the model-based techniques, several deep
learning-based approaches have been proposed and achieved great
success by devising specific network architectures [5,23]. We sug-
gest the interested readers refer to [1] on this topic. Compared to
most of learning-based approaches, JSL3bdoes not require paired
2D-3D training samples.

Human Pose Structure Capture

For capturing human pose structure, physiological knowledge
is often used as regularizing constraints which are imposed in
3D pose inference, such as joint angle limits [14] and limbs
lengths [10]. However, such physiological constraints can only cap-
ture partial relations between body joints. In addition to using
physiological constraints, ordinal depth relations are introduced to
model the structure between 2D joints by using additional 2D
depth annotations [G]. Recently, there are some deep learning-
based works apply transformer architecture to capture the rela-
tionship among human body joints [7]. The most relevant work to
us is [23], which uses autoencoder to learn latent representations
for 3D poses, then directly map input 2D joints to the latent repre-
sentations based on a large number of paired 2D-3D training data.
The implicit relations in the input pose are not carefully explored
in such a data-driven strategy.

Most existing approaches either use body physiological con-
straints or additional data information (i.e., depth annotations or

paired 2D-3D data) for the consistency of human pose structure.
Unlike these strategies, in this paper, we propose to capture the
implicit spatial structure relations for input 2D joints, which are
imposed into a model-based frame to guide the 3D human pose
inference. Notice that additional data are not required in our ap-
proach.

3. Background

This section introduces the preliminary knowledge of this work,
including the weak perspective camera model and the Sparse Rep-
resentation (SR) in 3D pose estimation.

3.1. Weak perspective camera model

In this work, a human body is represented as a skeleton With
N joints, in which 2D and 3D poses are denoted as X = {j’,}
R2N<Tand Y = {j;}IV, e R3V*1, respectively, where j'; and j; are 1ts
corresponding 2D and 3D coordinates of joint i, respectively. By ap-
plying a weak perspective camera model, the dependence between
the 2D pose and its corresponding 3D pose is described as:

X =(Inne MY +t® 1y, (1)

where M e R2*3 is the camera projection which contains both scal-
ing and rotation parameters. ® is the Kronecker product and I
is the identity matrix. t ¢ R2*! is the camera translation vector.
Based on Eq. (1), our aim is to find the 3D pose Y whose 2D pro-
jection is required to be consistent with the given 2D pose X as
much as possible.

3.2. Sparse representation in 3D pose estimation

It is an ill-posed problem to obtain 3D pose Y by solving
Eq. (1) since there may be many feasible solutions in the math-
ematical sense. To alleviate this issue, SR model is introduced to
infer 3D pose Y from 2D projections X. With the SR model, an
original 3D pose Y is approximated as a sparse linear combination
of a set of basis poses:

k
Y = chij (2)
j=1
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where k is the number of basis poses. b; e R3N represents a ba-
sis pose, and c; is the corresponding coefficient. For the problem
formulation, we eliminate translation vector t in Eq. (1) by cen-
tralizing the data and plug Eq. (2) into Eq. (1), we have

X = (In.y ® M) (Bc), (3)
where ¢=[c;,...¢]T is a coefficient vector. Basis pose set B=
{by,by, ..., b,} is named as overcomplete dictionary in the SR

model and learned from the training poses in the MoCap dataset.
Since the dictionary B can be pre-learned by existing dictionary
learning algorithms. The estimation problem of 3D pose from 2D
joints is converted to the calculation of camera parameters M and
coefficient vector c.

Note that ¢ is expected to be only a few nonzero entries un-
der SR assumption. To enforce sparsity on coefficient ¢, ¢;-norm is
introduced. Thus, the problem is modeled by the following opti-
mization formulation:

argmin|icfly  sit. X = (In.v @ M)(Bc). (4)

Considering the observation noise, we relax the equation con-
straint in Eq. (4) by adopting lagrangian multiplier as follows

1
argmin o | X — (I ® M) (Bo)|12 + Allcll1, (5)

where || - ||; denotes the ¢;-norm and || - ||r represents the Frobe-
nius norm of a matrix. In Eq. (5), the first term is the reconstruc-
tion error in the projection space, and the second term is the spar-
sity regularization to induce a sparse 3D representation. A > 0 is
the balance parameter for two terms.

4. Our approach

This section gives the detailed design of our JSL3p. We first ex-
plore the representation learning with the implied structural infor-
mation for the input 2D poses using an end-to-end autoencoder.
Then, we introduce joint subspace learning for our 3D pose esti-
mation using a latent representation capturing the spatial relations
between body joints and the 2D joint coordinates. Last, the opti-
mization procedure is described.

4.1. Autoencoder for implicit structure capture

To capture the spatial relations of body joints, we use an
end-to-end autoencoder to learn a robust representation by map-
ping input 2D joints to a latent space. Autoencoder has shown
promising performance in unsupervised learning [24]. In this work,
we encode input 2D joints into a latent representation using
an autoencoder with one hidden layer. Formally, given a train-
ing set of 2D poses X =[X1,X>5,...,Xy], the standard training
procedure of an autoencoder is to learn the parameter set ® =
{Wenc, benc, W gec, bgec} by minimizing the following square loss:

M
<I>* — argmq&]‘] Z ”Xm —Xm| %, (6)

m=1

where M is the number of the training 2D poses. Wepc € RN*2N
and Wy, € R?N*Ni denote the weight matrices for encoding and
decoding. benc € RN and bgec € R2N are corresponding bias terms.
N, is the number of hidden layer nodes. X, = f(X;, ®) represents
the reconstructed inputs for the mth sample, where f(-) describes
a mapping function of a complete autoencoder. For an autoencoder
with only one hidden layer, f(-) comprises an encoding and a de-
coding processes as

Lm = E(Xm)y
R = D(Ln), )
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where L;; € RN denotes the latent representation for the mth sam-
ple, termed as the implicit structure representation, which encodes
the input 2D joints. E(X;) and D(Ly,) are encode and decode func-
tions respectively, which are given as

E(Xm) =g(wencxm +benc)7 (8)
D(Lm) = g(wdech + bdec)s

where g(-) represents a nonlinear activation function. Autoencoder
can induce robust representation directly from input data while
holding the original information. All joints of the original input
pose X are encoded and preserved in each element of L;; which re-
flects implicit correlations between body 2D joints, instead of sim-
ply the coordinates.

4.2. Joint subspace learning for 3D pose estimation

After training the autoencoder, we obtain the encode function
E(-), which can map a 2D pose X to the latent space and gener-
ate implicit structure representation L. Based on the standard SR
model formulated by (5), we map the given and the projected 2D
pose into the latent space to produce implicit structure represen-
tations. Note that the projected 2D pose is projected from the es-
timated 3D pose (i.e., the 3D pose approximated by a linear com-
bination. Then, we introduce an equality constraint to enforce im-
plicit structure representations of 2D poses in the latent space. As
a result, Eq. (5) is reformulated as

argmlnMC%HX— (INXN®M)(BC)”§+)"”C”1 (9)
s.t. E(X) =E((Iy«v ® M)(Bc)),

where E(X) =L and the result of E((In,y ® M)(Bc)) are the im-
plicit structure representations for the input 2D pose and the esti-
mated 3D pose respectively. The model (9) states that, in addition
to the minimization requirement in the 2D projection space be-
tween the given 2D pose and the projected 2D pose, the implicit
structure representation in the latent space is also required to be
fitted. The model (9) is the final objective function built upon the
joint 2D space and the latent space to enable our optimization pro-
cedure.

4.3. Optimization

We present an algorithm to implement our model (9). The Aug-
mented Lagrangian Methods (ALMs) is applied to solve the equality
constraint problem in model (9). By introducing a dual variable Z,
the Augmented Lagrangian function of (9) is denoted as

LM, ¢.Z) = 3|IX — (Inen © M) (Bo)[12 + Allc]l4

+5IE(X) — E(Un.n ® M) (Bc)) |2 (10)
+ < Z,E(X) — E((Inxn ® M) (Bc)) >,

where @ > 0 is a penalty parameter. Then, the alternating direc-
tion method of multipliers (ADMM) is used to update the values

of variables M, ¢, Z by the minimizing following sub-problems un-
til convergence:

M = argmNiInL(Mt,c‘,Zt), (11)
= argmcinﬁ(M‘“,ct,Z‘), (12)
Z% = 7' + W(EX) — E((Iney @ M) (B ), (13)

where t denotes the tth iteration. The sub-problems (11) and
(12) can be solved by using Accelerated Proximal Gradient (APG)
and the manifold optimization solver in the Manopt toolbox re-
spectively. When c¢ reaches the optimum, we can obtain an es-
timation result of the 3D pose by calculating Eq. (2). The algo-
rithm with a maximum number ¢yax of iterations is summarized
in Algorithm 1.
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Algorithm 1 ADMM to solve the problem (10).

Input: X, B, Wepc, benc  //The input 2D joints, the 3D basis dictio-
naries, encode matrix and bias.

Parameter: t,A,u  [/The convergence tolerance, the hyper-
parameters.

Output: Y //The 3D human pose.

1: initialize ¢, M, Z, T, A, lL.

2: while |||, > T or £ < ¢max do

. update M by (11).
update c by (12).
update Z by (13).
calculate r = X — (Iy,y ® M) (Bc). [/ the estimation residual.
update ¢ = ¢+ 1. [/ iteration count.
: end while
: calculate Y by (2);

© % N2 U hWw

Table 1
The brief summary of four evaluation datasets.

Dataset Size # of Actions  # of Subjects
Human3.6M [18] 1376 videos 15 11
HumanEva-I [17] 56 videos 6 4

CMU MoCap [25] 2605 videos 23 109

MPITI [26] 25,000 images  N.A. N.A.

5. Experimental setup and evaluation
5.1. Evaluation datasets and protocols

The extensive evaluations of JSL3pare performed on three pub-
lic datasets, i.e., Human3.6M [18], HumanEva-I [17], CMU Mo-
Cap [25], and MPII [26]. The brief information about evaluation
datasets is described in Table 1. We conduct the quantitative ex-
periments on the first three datasets and qualitative experiments
on the last.

Human3.6M contains millions of paired (2D, 3D) poses with
corresponding RGB images. It includes 15 activities performed by
seven actors in a configured indoor environment. The standard
evaluation protocol uses five subjects (S1, S5, S6, S7, and S8) and
two subjects (S9 and S11) for the training and testing, respec-
tively [4,22]. This standard evaluation protocol is named protocol
#1. In some literature, six subjects (S1, S5, S6, S7, S8, and S9) are
used for training and only S11 for testing [27,28]. This protocol is
named protocol #2. These two different protocols are found in the
existing literature. Moreover, for the training, there are also two
different ways. The one trains a universal model for all actions of
the testing set [4]. In comparison, another trains special models
for each testing class [23]. Two different evaluation protocols and
training ways are also considered in this paper. For protocol #1,
we train a universal dictionary only using 3D poses from the train-
ing data [4]. For protocol #2, following the same training protocol
in [29], we learn special dictionaries for each testing activity.

HumanEva-I also contains images with corresponding poses
(2D, 3D) captured in indoor. It includes six actions performed by
four actors. Following the standard evaluation protocol [4,10], we
train our dictionary by using the training set of HumanEva-1I, and
test on the walking and jogging performed by three subjects (S1,
S2, and S3) from the validation set. Following the same training
protocol in [4,22], we learn action-specific dictionaries for each
subject separately.

CMU MoCap contains more than 3 million annotated 3D hu-
man poses with corresponding synchronized videos performed by
144 subjects. Following the standard evaluation protocol used in
related model-based approaches [9], we conduct our experiments
on eight categories (i.e.,, walk, run, jump, climb, box, dance, sit,

Pattern Recognition 132 (2022) 108965

and basketball). For each category, we randomly select six video
sequences and corresponding human pose annotations, in which
three sequences are used for dictionary learning and the remain-
ing three for testing. The 2D human poses of CMU MoCap dataset
are projected from 3D human poses by simulating an orthographic
camera motion with 360-degree rotation [9]. Following the same
training protocol in [9], we learn a single dictionary for all testing
examples.

MPIT includes over 410 activities of 40K people around 25K In-
ternet images in various outdoor scenes. For each image, only cor-
responding 2D annotations are provided.

5.2. Implementation details

In our implementation, similar to previous work [4,10], we use
the stacked hourglass model [3] for the 2D joints detection, which
is pre-trained on the MPII and fine-tuned on Human3.6M. In
our model, the hyper-parameter y controls the optimization step,
which is empirically set & = 0.0001. The maximum iteration ¢max
and convergence tolerance t are set to 1000 and 0.0001, respec-
tively. For the hyper-parameter A, we conduct the ablation analysis
in the next section. For camera parameter M and coefficient vec-
tor ¢ in Eq. (11), we initialize them as an identity matrix and zero
vectors, respectively.

The dictionary B is learned by the algorithm proposed in [9].
Considering the different amount of training examples, we set dif-
ferent dictionary sizes. Specifically, the dictionary sizes are set to
400 and 150 for the universal and action-specific dictionaries on
Human3. 6M, respectively. For HumanEva-I and CMU MoCap, k is
set to 358 and 128, respectively. The dictionary learned from CMU
MoCap is used for the qualitative experiments of MPII [9].

To obtain the latent representation L, in Eq. (7) for input 2D
poses, we train a simple autoencoder with one hidden layer in
Pytorch. The hidden layer contains the same number of nodes as
the input layer, that is, N; = 2 x N. We use PReLU as the activation
function g(-) across our autoencoder architecture. The autoencoder
model is trained in an end-to-end pattern by using only 2D anno-
tations in MPII.

5.3. Evaluation settings

5.3.1. Evaluation metric

To evaluate the estimation quality of the 3D human pose, we
follow the two standard metrics, i.e., mean per joint 3D error and
mean estimation error. The first one calculates the average Eu-
clidean distance between the estimated 3D pose and ground-truth
3D pose over all the joints. The second is defined as the per joint
3D error up to a similarity transformation for two 3D poses. Fol-
lowing the standard evaluation protocol, we use the mean per
joint position error and mean estimation error on Human3 . 6M. For
HumanEva-I, only mean estimation error metric is considered.

5.3.2. Comparison approaches

We compare the performances of JSL3pwith several existing
methods on Human3.6M and HumanEva-I. In this paper, we
study the ability of the SR model with unsupervised features learn-
ing for the 3D human pose estimation. Thus, for a fair compar-
ison, we mainly focus on comparing the competing approaches
that do not need paired 2D-3D data. To verify the effectiveness
of JSL3D, we use the standard SR-based model (as formulated in
Eq. (5)) as the comparison baseline, denoted as “Base”. The same
dictionary is used for both “Base” and JSL3pfor a fair compari-
son. Moreover, to validate the effectiveness of JSL3D, we also com-
pare our performance with several representative learning-based
approaches. Recently, some learning-based approaches have been
devoted to exploring a unsupervised [30,32] or weakly supervised
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strategy [35,36] for the 3D human pose estimation. These ap-
proaches are also considered in the comparison. All compared ap-
proaches may be using labeled (i.e., ground-truth) or detected 2D
as input. Since the reconstruction performance depends on the ac-
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5.4.2. HumanEva-I
We have also compared JSL3pwith Base and several approaches
on HumanEva-I. The mean 3D pose errors are reported in



Table 3

Mean estimation errors (mm) on Human3.6M under protocol #1. “P” denotes using paired 2D-3D training data, while “NP” denotes not using. Best results are marked in bold.
Methods Direct.  Discuss  Eat Greet  Phone  Photo  Pose Buy Sit SitDown  Smoke  Wait WalkDog ~ Walk WalkPair  Avg.

Ground-Truth 2D
(NP) 3DInterpreter [36] * 56.3 77.5 96.2 71.6 96.3 106.7  59.1 1092 1119 1119 124.2 93.3 - 58.0 - 88.6
(NP) AIGN [35] 53.7 715 82.3 58.6 86.9 98.4 57.6 1042 1000 1125 833 68.9 - 57.0 - 79.0
(NP) Zhou et al. [4] 52.0 54.0 59.1 61.7 74.2 70.7 51.5 60.3 83.9 119.9 66.9 54.8 64.5 55.6 59.1 65.9
(P) Morenonoguer et al. [29]  53.5 50.5 65.8 62.5 56.9 60.6 50.8 56.0 79.6 63.7 80.8 61.8 59.4 68.5 62.1 62.2
(NP) Wang et al. [37] 48.4 57.1 49.8 54.8 57.2 50.9 51.6 76.0 109.8 553 74.5 57.0 40.2 61.3 47.2 59.4
(NP) Jiang et al. [22] 51.2 48.1 46.1 57.4 51.2 58.2 50.1 47.6 61.7 82.1 48.6 53.5 54.4 50.3 54.5 53.8
(NP) Base 52.2 53.9 49.6 58.3 58.6 71.9 51.1 65.0 63.9 91.2 54.5 56.2 58.5 50.9 58.5 58.9
(NP) JSL3D 47.8 45.6 46.6 54.2 49.6 61.3 48.6 48.1 534 65.9 46.9 50.3 54.4 49.5 56.1 51.2
Detected 2D

(NP) Akhter and Black [14] f  199.2 177.6 161.8 197.8 176.2 86.5 1954 1673 160.7 173.7 177.8 1819 176.2 1986  192.7 181.1
(NP) Zhou et al. [9] T 99.7 95.8 87.9 116.8  108.3 1073 935 95.3 109.1 137.5 106.0 102.2  106.5 1104 115.2 106.7
(NP) 3DInterpreter [36] * 78.6 90.8 92.5 89.4 108.9 1124 771 106.7 1274  139.0 103.4 91.4 - 79.1 - 98.4
(NP) Rhodin et al. [32] - - - - - - - - - - - - - - - 98.2
(NP) AIGN [35] 77.6 91.4 89.9 88 107.3 110.1 75.9 107.5 1242 1378 102.2 90.3 - 78.6 - 97.2
(P) Morenonoguer [29] 69.5 80.2 78.2 87.0 100.8 76.0 69.7 1047 1139 89.7 102.7 98.5 79.2 82.4 77.2 87.3
(NP) Bogo et al. [38] 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 1003 1373 83.4 77.3 86.8 79.7 87.7 82.3
(P) Lin et al. [39] 58.0 68.2 63.3 65.8 75.3 93.1 61.2 65.7 98.7 127.7 70.4 68.2 72.9 50.6 57.7 73.1
(NP) Base 63.5 64.9 62.0 68.9 68.8 82.6 60.9 73.1 88.5 111.6 67.0 69.4 724 62.3 68.9 71.8
(NP) JSL3D 59.4 63.9 57.7 68.1 66.5 79.4 62.9 57.6 82.1 102.9 65.8 72.4 68.4 60.6 67.2 68.9

Note: The literature with marker T and * denotes that corresponding results are obtain from Bogo et al. [38] and Tung et al. [35], respectively.

Table 4

Mean estimation errors (mm) on Human3.6M under protocol #2. “P" denotes using paired 2D-3D training data, while “NP” denotes not using. Best results are marked in bold.
Methods Direct. ~ Discuss  Eat Greet ~ Phone  Photo  Pose Buy Sit Sitbown  Smoke  Wait WalkDog ~ Walk WalkPair ~ Avg.

Ground-Truth 2D
(P) Yasin et al. [27] 60.0 54.7 71.6 67.5 63.8 96.9 61.9 55.7 73.9 110.8 78.9 67.9 67.9 89.3 47.5 70.5
(P) Zhou et al. [28] 59.1 63.3 70.6 65.1 61.2 68.4 73.2 83.7 84.9 72.7 84.3 81.9 75.1 57.9 49.6 70.0
(NP) Base 51.2 50.3 51.8 61.1 47.8 73.3 59.3 43.9 62.1 75.6 58.9 62.2 54.1 40.3 57.4 56.6
(NP) JSL3D 45.6 429 52.0 55.70 46.5 67.5 48.4 61.6 62.5 68.3 55.2 50.2 494 39.0 52.9 53.2
Detected 2D

(P) Yasin et al. [27] 88.4 72.5 1085 1102 97.1 81.6 107.2 1190 170.8 108.2 142.5 86.9 92.1 165.7  102.0 108.3
(P) Zhou et al. [28] 67.9 65.4 77.7 69.3 68.9 75.9 86.5 1053 815 86.3 73.6 1023 59.1 69.8 52.6 76.1
(NP) Chen and Ramanan [33]  71.6 66.6 74.7 79.1 70.1 67.6 89.3 90.7 1956 83.5 93.3 71.2 55.8 85.8 62.5 82.7
(P) Nie et al. [40] 62.8 69.2 79.6 78.8 80.8 72.5 73.9 96.1 1069  88.0 86.9 70.7 719 76.5 73.2 79.5
(P) Morenonoguer [29] 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 1035 748 92.6 69.6 715 78.0 73.2 74.0
(NP) Base 56.1 56.6 60.1 69.1 56.9 74.0 103.2 1475 618 96.0 90.6 69.5 60.3 70.1 65.8 75.8
(NP) JSL3D 50.8 51.6 58.0 62.6 53.2 63.6 109.7 1445 65.6 82.3 89.6 59.4 57.2 68.7 62.4 71.9
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Table 5
Mean estimation errors (mm

Pattern Recognition 132 (2022) 108965

) on HumanEva-I. “P” denotes using paired 2D-3D train-

ing data, while “NP” denotes not using. Best results are marked in bold.

Method Walking(C1) Jogging(C1)
S1 S2 S3 S1 S2 S3 Avg.
Ground-truth 2D
(P) Morenonoguer [29] 284 27.8 31.7 478 27.8 30.2 37.1
(NP) SDM3d [11] 300 300 323 279 271 319 299
(NP) Jiang et al. [22] 215 204 200 215 215 219 211
(NP) Base 46.2 325 467 220 154 245 312
(NP) JSL3D 161 130 336 217 144 172 193
Detected 2D
(NP) Yasin et al. [27] 358 324 416 466 414 354 389
(NP) Wang et al. [10] 403 376 374 397 362 384 383
(NP) Zhou et al. [4] 343 316 493 486 340 300 379
(P) Katircioglu et al. [23] 29.3 17.9 59.5 - - - 35.6
(NP) Base 51.0 550 682 356 37.1 522 499
(NP) JSL3p 239 282 558 321 320 456 36.7
A e ——— z\ | Tr— \ ) _
= -+ =Base bt —+ =Base c
£ go | |""®- Base+ -=®- Base+ 2 £
g Zhou et al. A 08 Zhou et al. ‘,‘)‘ =
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Fig. 3. Quantitative results on CMU MoCap dataset. (a) Mean 3D estimation errors on different testing motions. (b) The distribution of mean 3D estimation errors. The y-axis
is the percentage of the testing examples whose estimation errors are less than the corresponding x-axis value. (c) Mean 3D estimation errors on various standard deviations

of Gaussian noise.

Table 5. The figures in the table are cited from the original pa-
pers. Similar to the evaluation on Human3. 6M, we divide all com-
pared results into two groups, i.e., ground-truth 2D and detected
2D. Similar to the evaluation results on Human3.6M, JSL3pboosts
the performance of Base in all categories of HumanEva-I. Such
observations confirm that the effectiveness of JSL3pis supported by
a learned implicit representation of the input 2D pose. In particu-
lar, compared to Base, JSL3pachieves better performance with more
than 38% (ground-truth 2D) and 26% (detected 2D) performance
improvements, respectively.

In addition, JSL3pachieves the best performance on average
compared to all model-based and several representative learning-
based approaches. Specifically, when using the ground-truth 2D as
the inputs, JSL3poutperforms all comparison algorithms in 4 out of
6 categories and obtains more than 8% improvement on average.
Using the detected 2D poses as the inputs, JSL3Dstill achieves the
best performance in 4 out of 6 categories with more than 3% im-
provement on average compared to the existing model-based ap-
proach [4] (TPAMI 19’). When comparing with deep learning-based
approaches [23] (IJCV 18’), which also aims to maintain the implicit
structure of poses, JSL3Dstill outperforms this approach in 2 out of
3 categories. Note that the paired 2D-3D data are required in the
work [23], which are not needed in JSL3D.

There are exceptions in a few cases, such as the “Walking”
category of S3. The performance of JSL3Dis not very high. We
found that some annotations with outliers exist in this cate-
gory. Since JSL3plearns a robust representation from the input
2D joints directly, the outliers impact the accuracy of implicit
representation.

5.4.3. CMU MoCap

Although the few works evaluate their approach on CMU Mo-
Cap, the work [9]) still reports the experiment results on this
dataset. Since the work [9] is closely related to ours, we also eval-
uate our approach on this dataset. In the following comparisons,
“Base+” is an alternative optimization solution of the standard SR
model, which is also reported in literature [9]. All comparison ap-
proaches in this dataset do not use paired 2D-3D training data.

The first experiment is conducted on different motions,
as shown in Fig. 3(a). JSL3poutperforms baseline approaches
and [9] across most motions. We observe that in categories with
less depth ambiguity (e.g., walk), JSL3pshows more significant im-
provements due to capturing more accurate joint implicit struc-
ture. We further present the percentage of mean 3D estimation er-
ror ranges of all testing examples, as shown in Fig. 3(b). As seen
from the figure, JSL3Dperforms better estimation on most test-
ing examples than comparison approaches. Significantly, the per-
centage of JSL3preaches 60% when the mean estimation errors are
smaller than 50 (mm). This percentage is reduced to around 42% of
comparison approaches. To analyze the robustness of JSL3Dagainst
noise, we evaluate JSL3pby adding Gaussian noises with different
standard deviations on inputted 2D joints. The results are reported
in Fig. 3(c). The 3D estimation errors of JSL3Dpare consistently lower
than the comparison approaches across all noise levels.

Considering that the deformation of body joints leads to dif-
ferent degrees of depth ambiguity, we present the estimation per-
formance of approaches on different joints. The mean estimation
errors on different body joints are reported in Table 6. We ob-
serve that JSL3Dpconsistently yields lower estimation errors across
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Table 6

Pattern Recognition 132 (2022) 108965

Mean 3D estimation errors (mm) of different joints on CMU MoCap dataset. Note that RH, RK, RA, LH, LK, RE, RW, LS, LE, and LW denote right hip, right
knee, right ankle, left hip, left knee, right elbow, right wrist, left shoulder, left elbow, and left wrist, respectively.

Methods Pelvis RH RK RA LH LK LA Neck Head  Spine RE RW LS LE LW Avg.
Base 40.0 48.4 59.8 69.5 48.2 61.9 74.9 29.0 46.6 41.6 56.6 89.8 46.8 64.3 88.8 57.8
Base+ 414 489 624 701 491 660 778 268 47.7 39.2 60.0 862 459 66.1 839 58.1
Zhou et al. 35.3 45.5 533 64.2 48.3 53.8 68.1 25.6 445 399 58.0 76.7 43.7 61.0 75.7 529
JSL3p 36.7 454 524 67.7 44.2 553 72.2 24.6 40.7 38.5 54.5 771 43.1 54.2 75.2 52.1
Table 7
Mean running time (ms) of different motions on CMU MoCap dataset.
Methods Walk Run Jump Climb Box Dance Sit Basketball ~ Avg.
Base 20.52 20.38 19.80 18.23 27.16 23.89 33.29 19.28 22.82
Base+ 37.62 40.0 40.23 54.64 48.03 54.54 60.65 48.72 48.05
Zhou et al. 1017.56 752.97 955.42 839.22 771.54 801.78 801.78 838.95 855.09
JSL3p 410.75 517.61 59195 608.02 594.06 761.80 63848 561.76 585.93
Input Image Heat Map 2D Pose Est. 3D Pose Input Image Heat Map 2D Pose Est. 3D Pose

&

3

(b)

Fig. 4. Qualitative experiments on MPII. (a) The successful estimation results. (b) The failure estimation results.

all joints than Base and Base+, and more than 9% improvement
on average. Compared to [9], JSL3pachieves better performance
in 10 out of 15 joints and the average error. Since self-occlusion
and severe deformation seldom occur in some human body joints
(e.g., head and elbow), the depth ambiguity of these joints is rel-
atively not serious. As we expected,JSL3Dshows more significant
improvements in these joints since the more accurate joint im-
plicit structure is learned. Specifically, the JSL3pachieves a better
reconstruction performance by more than 8% improvement on the
“head” joint.

It seems that the margin between our work and [9] is narrow
in a few cases, such as the estimation error of “Dance” in Fig. 3(a)
and the average error in Table 6. However, the execution speed of

JSL3pis faster than [9] under the same running environment con-
figuration. The mean running times on different testing motions
are presented in Table 7. The experiments are implemented in
MATLAB on a laptop with an Intel i7 2.30 GHz CPU, an Nvidia RTX
3060 GPU, and 32 GB RAM. It is not surprising that “Base” runs the
fastest since it is a standard SR-based model. However, the estima-
tion performances of “Base” are often unsatisfactory. Running time
increases when more complex optimization strategies (i.e., “Base+”
and [9]) are used. The work [9] handles complex body variability
using a convex optimization strategy during the model inference.
In this paper, we use a pre-trained autoencoder to obtain the im-
plicit structure of the human body, which relieves the stress of the
optimization process, resulting in reduced running time. Specifi-
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Fig. 6. Comparison of 2D pose RMSE between Base and JSL3D. (a) RSME values during one iteration. (b) RSME values distribution of all testing examples.

cally, as seen from Table 7, compared to [9], JSL3phas less run-
ning time in all motions, with an average running time reduction
of more than 31%.

5.4.4. MPIl

In the following, we explore the applicability of JSL3pon the
MPII dataset. For each input 2D image, we locate its 2D joints
heat map using the stacked hourglass 2D detector [3]. Since MPII
does not provide any 3D annotation, a dictionary learned from
Human3.6M is adopted for the inference of 3D poses. The estima-
tion results with various activities are presented in Fig. 4, where
each row includes two examples. We can see that JSL3Dpis able to
produce reasonable 3D human poses from an image for a wide
variety of viewpoints and activities, as the successful examples
shown in Fig. 4(a). The failed examples shown in the Fig. 4(b) are
mainly because heavy occlusions cause incorrect 2D detection and
some extreme activities.

5.4.5. Ablation study

To explore the impacts of A in Eq. (10), we have further con-
ducted ablation experiments using different datasets. In addition,
the effectiveness of JSL3Dduring optimization is also studied.

For the ablation analysis, using ground-truth 2D poses of test-
ing samples as inputs, we tested the value of the parameter XA in
the range of [0, 5]. The ratios of the mean estimation errors to A
for Human3.6M, HumanEva-I, and CMU MoCap are presented in
Fig. 5(a), (b), and (c), respectively. The variation in A leads to the
precision fluctuation of 3D estimation, while the mean estimation
errors reach small values when A is in the range of [0, 1] both
for the three datasets. Thus, we fix A = 0.3 for Human3.6M and
HumanEva-I, A = 0.1 for CMU MoCap in the experiments.

In addition, to verify the effectiveness of the proposed scheme,
we have conducted convergence experiments. Compared to the

10

Base built upon on the standard SR model (5), our model (9) im-
poses the implicit structure constraint of a latent space on the
standard model. It is observed that after the convergence of
the Base, JSL3Dcontinues to iterate to find a smaller Root Mean
Square Errors (RSME) under the same tolerance value, as shown
in Fig. 6(a). Moreover, the RMSE distribution of all testing exam-
ples after algorithms convergence is shown in Fig. 6(b). Note that
the y-axis is the percentage of the testing cases whose RMSE is
less than the x-axis value. As expected, JSL3pachieves lower RMSE
values than Base.

6. Conclusion

In this paper, we presented JSL3Dp, a novel joint subspace
learning approach with implicit structure supervision based on
the SR model, for precisely estimating human 3D poses. Instead
of imposing a pose structure learning module on the optimiza-
tion procedure, JSL3Ddirectly obtains the spatial relations of body
joints through an autoencoder pre-trained on 2D joints of the hu-
man body. Then, JSL3pcombines original input 2D joints, and the
learned implicit representation capturing the spatial relations of
body joints as supervisions for the SR model, in which the opti-
mization is processed on both the 2D and the latent spaces. Such
strategies enable the standard SR model to capture the implicit
structure for input signal without introducing additional compu-
tational cost, which may be able to extend to other SR-based
signal processing applications. We have evaluated JSL3pon four
large-scale datasets (i.e., Human3.6M, HumanEva-I, CMU MoCap
and MPII) with the comparison of several well-recognized bench-
marks. The experiment results demonstrate that JSL3pshows supe-
rior overall performance across all quantitative evaluations com-
pared with the state-of-art model-based approaches and achieves
competitive performance compared with several representative
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learning-based approaches. In our approach, the projection ambi-
guity is a critical factor that affects the structure capture accuracy
of the 2D human pose. To alleviate this issue, in the future, we may
leverage context information of the input image to explore joint
depth that may be a useful cue for the pose structure capture.
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