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a b s t r a c t 

Estimating 3D human poses from a single image is an important task in computer graphics. Most model- 

based estimation methods represent the labeled/detected 2D poses and the projection of approximated 

3D poses using vector representations of body joints. However, such lower-dimensional vector representa- 

tions fail to maintain the spatial relations of original body joints, because the representations do not con- 

sider the inherent structure of body joints. In this paper, we propose JSL3d , a novel joint subspace learn- 

ing approach with implicit structure supervision based on Sparse Representation (SR) model, capturing 

the latent spatial relations of 2D body joints by an end-to-end autoencoder network. JSL3d jointly com- 

bines the learned latent spatial relations and 2D joints as inputs for the standard SR inference frame. The 

optimization is simultaneously processed via geometric priors in both latent and original feature spaces. 

We have evaluated JSL3d using four large-scale and well-recognized benchmarks, including Human3.6M , 
HumanEva-I , CMU MoCap and MPII . The experiment results demonstrate the effectiveness of JSL3d . 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Estimating 3D human poses from a single RGB image contain- 

ng the human activity is a fundamental yet challenging task in 

any applications [1] , such as virtual reality [2] . Most existing ap- 

roaches first use robust 2D detectors [3] to obtain 2D body joints 

rom the image, and then design a post-processing mapping pro- 

edure to reconstruct 3D pose from these detected 2D joints [4,5] . 

ince similar 2D body joints may be projected from various 3D hu- 

an activities, these approaches are often suffered from the inher- 

nt ambiguity of 2D-to-3D mapping. 

To alleviate such inference ambiguity, researchers have explored 

arious solutions, which can be roughly divided into learning- 

ased and model-based methods. The former directly learns an 

nd-to-end mapping from 2D to 3D joints, such as deep learn- 

ng based approaches [6] [5,7] . Generally, the estimation capabil- 

ty of learning-based approaches depends on a large number of 

D-3D paired data for supervised learning. Such weakness can be 

liminated by a model-based method called sparse representation 

odel [8] , which fits a parametric body model to 2D joints based 

n geometry prior [9–11] . 
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During the past few years, several sparse representation (SR)- 

ased approaches have been proposed to infer the 3D human 

ose [4,11,12] . In the standard procedure of SR-based approaches, 

he parametric body model is used for the 3D pose estimation. By 

ntegrating given (i.e., manual annotations) or detected 2D joints 

nd 3D geometry priors, the body model parameters are solved by 

inimizing the Euclidean Distance in Cartesian space between the 

D pose and the projection of the approximated 3D pose. In partic- 

lar, the 2D and 3D poses are described as 2 ∗ N and 3 ∗ N dimen- 

ional vector representations of the N body joints, respectively. The 

nference procedure in the standard SR-based approach is shown in 

ig. 1 (a). Although the effectiveness of the SR-based paradigm in a 

onstrained environment (i.e., without paired training data), there 

re still limitations that hinder better performance in 3D human 

ose estimation. 

.1. Limitations and insights 

Firstly, vector representations of human pose lose the inher- 

nt structure of the original data [13] , resulting in the degradation 

f estimation performance. Since the human body is highly struc- 

ured, the spatial relation of body joints is crucial when recon- 

tructing the 3D pose from a 2D pose, as shown in Fig. 1 (b). In the

gure, each joint has spatial relations with all the other joints in 

he human body. Such relations should be consistently preserved 

etween 2D and 3D spaces. For example, the location of hand joint 
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Fig. 1. (a) The inference procedure in the standard SR-based approach. (b) The illustration of maintaining relation consistency between input 2D and output 3D poses. Note 

that a known skeleton configuration connects the body joints of the human pose. 
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is between the head and foot joints in the input space, which 

lso should be precisely preserved in the output space. Previous 

R-based approaches have attempted to keep the original struc- 

ure of the input 2D pose by imposing additional configuration 

onstraints, such as the proportions of limbs [12] and joint angle 

imits [14] . However, these strategies only preserve the partial in- 

ormation of the body joints based on anthropometric knowledge. 

o the best of our knowledge, exploiting the deep implicit topo- 

ogical relations for human pose joints is an unexplored yet impor- 

ant problem to the current SR-based 3D human pose estimation 

pproach. 

Secondly, as shown in Fig. 1 (a), the standard SR-based approach 

mplements the optimization procedure in 2D projection space. 

he 3D human pose is not inferred directly in the original 3D 

pace. Since the real projection matrix is unknown, such a mini- 

ization procedure based on a single projection space introduces 

stimation bias for the resulting 3D inference. 

.2. Our solution 

In this paper, we propose a Joint Subspace Learning with Im- 

licit Structure Supervision for 3D Pose Estimation, namely JSL3d , 

o alleviate the above issues. Firstly, we propose to capture im- 

licit structure representations from all input 2D joints by leverag- 

ng an unsupervised learning-based approach called autoencoder. 

econdly, to keep the consistent implicit spatial relations of body 

oints between 2D and 3D spaces, we propose a new joint sub- 

pace optimization frame based on latent and projection spaces by 

ntegrating the implicit spatial structure, 2D body joints, and 3D 

eometric prior. 

Figure 2 gives an overview of our solution. Concretely, Firstly, 

iven an input image, the 2D pose is obtained by a set of body 

oints that are labeled manually or detected by a deep convolu- 

ional neural network (CNN), as depicted in Fig. 2 (a). Secondly, to 

stimate the 3D pose from the inputted 2D pose, we firstly ob- 

ain an original 3D pose by a sparse linear combination of a set 

f basis poses. Then, we project this estimated 3D pose (i.e., ap- 

roximated 3D pose by a linear combination) into the 2D space, 

s shown in Fig. 2 (b). Thirdly, the inputted and projected 2D poses 

re fed into an autoencoder network to generate the latent rep- 

esentation, as shown in Fig. 2 (c). Finally, based on the 2D pose 

nd its latent representations, we propose a joint subspace learn- 

ng strategy that is built upon both the 2D and the latent spaces. 

y minimizing loss functions of the joint subspace learning, we 

ptimize the estimated 3D pose by updating linear combination 

oefficients. 
2 
In summary, the main contributions of this paper are as follows. 

• We propose a Joint Subspace Learning with Implicit Structure 

Supervision for 3D Pose Estimation, JSL3d , to estimate 3D hu- 

man pose from a 2D pose. It is the first attempt to impose im- 

plicit structure representations captured by the learning-based 

approach into the inference frame of the SR model, which 

boosts the SR model capturing complex structure relations of 

the input 2D pose. 
• This paper introduces a novel optimization procedure built on 

projection and latent spaces for the 3D human pose estimation, 

in which the implicit spatial relation consistency of body joints 

between 2D and 3D spaces is enforced. 
• Compared to existing model-based approaches, JSL3d achieves 

superior overall performance across all quantitative experi- 

ments on the well-recognized benchmarks. JSL3d even shows 

competitive results compared with several representative 

learning-based approaches. 

. Related work 

The task of 3D human pose estimation from 2D observations 

as been extensively studied in the literature. The early works at- 

empt to estimate 3D pose from 2D observations, such as silhou- 

ttes [15] and edges [16] . With the release of Motion Capture (Mo- 

ap) datasets [17,18] , a large number of 2D-3D human body joint 

nnotations are available. Based on these MoCap datasets, consid- 

rable effort has been devoted to inferring 3D human poses from 

he 2D body joints. A typical solution makes use of depth informa- 

ion [19] and multi-view images [20] captured in some highly sen- 

ored environment. Since sensor devices are difficult to deploy in 

eal scenarios, it is more realistic to estimate the 3D human pose 

imply from a single image [7,9] . In the following, we focus on the 

iterature of 3D pose estimation from the single view. The related 

orks to the estimation techniques used in JSL3d are introduced, 

specially model-based approaches using SR and the methods cap- 

uring human pose structures. 

Model-based Approaches 

In model-based approaches, 3D human pose estimation is mod- 

led as a parameter prediction problem of a given model, such 

s a known articulated skeleton. Recently, sparse representation 

SR) model [8] has been applied for the 3D human pose esti- 

ation [9,11,12] . It is an effective tool in capturing complex sig- 

al variability, which has been successfully used in various com- 

uter vision tasks, such as image classification [21] . Ramakrishna 

t al. [12] first apply SR model to estimate 3D human pose and 

ropose a matching pursuit algorithm for the prediction of model 
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Fig. 2. The overview of the proposed approach. (a) Given an image, we obtain a set of 2D joints which are connected into a 2D pose by a known skeleton configuration. (b) 

To estimate the 3D pose for the inputted 2D pose, we firstly represent a 3D pose as a sparse linear combination of learned basis poses. This approximated 3D pose is then 

projected into 2D space to produce a projected 2D pose. (c) The inputted and projected 2D poses are fed into an autoencoder network to generate the latent representations, 

respectively. (d) Based on 2D poses and their latent representations, we design a joint subspace learning built upon the 2D and the latent spaces. By minimizing loss 

functions of the joint subspace learning, linear combination coefficients of the estimated 3D pose are optimized. Note that the figure indicates an iterative process. 
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arameters. To enhance the work [12] , Zhou et al. [9] propose a 

onvex relaxation algorithm for the solution of model parameters 

y imposing the orthogonal constraints. Instead of using � 2 -norm 

o measure two 2D pose vectors, Wang et al. [10] apply � 1 -norm 

o alleviate the influence of 2D outliers. It is known that using the 

rojection error alone is not enough to ensure the most desired 

D pose. Jiang et al. [22] adjust the estimated 3D poses directly in 

he 3D space. In the work [11] , more geometric priors are learned 

rom the limited diversities of the training set for the 3D human 

ose estimation. The above model-based approaches only use the 

ector coordinates of 2D joints as input and perform minimization 

n a projections space. In contrast to these approaches, we inte- 

rate the 2D joint locations and its implicit structure representa- 

ions into the optimization frame, in which a minimization objec- 

ive function is built on both 2D projection space and other latent 

pace. 

In addition to the model-based techniques, several deep 

earning-based approaches have been proposed and achieved great 

uccess by devising specific network architectures [5,23] . We sug- 

est the interested readers refer to [1] on this topic. Compared to 

ost of learning-based approaches, JSL3d does not require paired 

D-3D training samples. 

Human Pose Structure Capture 

For capturing human pose structure, physiological knowledge 

s often used as regularizing constraints which are imposed in 

D pose inference, such as joint angle limits [14] and limbs 

engths [10] . However, such physiological constraints can only cap- 

ure partial relations between body joints. In addition to using 

hysiological constraints, ordinal depth relations are introduced to 

odel the structure between 2D joints by using additional 2D 

epth annotations [6] . Recently, there are some deep learning- 

ased works apply transformer architecture to capture the rela- 

ionship among human body joints [7] . The most relevant work to 

s is [23] , which uses autoencoder to learn latent representations 

or 3D poses, then directly map input 2D joints to the latent repre- 

entations based on a large number of paired 2D-3D training data. 

he implicit relations in the input pose are not carefully explored 

n such a data-driven strategy. 

Most existing approaches either use body physiological con- 

traints or additional data information (i.e., depth annotations or 
3 
aired 2D-3D data) for the consistency of human pose structure. 

nlike these strategies, in this paper, we propose to capture the 

mplicit spatial structure relations for input 2D joints, which are 

mposed into a model-based frame to guide the 3D human pose 

nference. Notice that additional data are not required in our ap- 

roach. 

. Background 

This section introduces the preliminary knowledge of this work, 

ncluding the weak perspective camera model and the Sparse Rep- 

esentation (SR) in 3D pose estimation. 

.1. Weak perspective camera model 

In this work, a human body is represented as a skeleton with 

joints, in which 2D and 3D poses are denoted as X = { j ′ i } N i =1 
∈ 

 

2 N×1 and Y = { j i } N i =1 
∈ R 

3 N×1 , respectively, where j ′ i and j i are its 

orresponding 2D and 3D coordinates of joint i , respectively. By ap- 

lying a weak perspective camera model, the dependence between 

he 2D pose and its corresponding 3D pose is described as: 

 = ( I N×N � M ) Y + t � 1 N , (1) 

here M ∈ R 

2 ×3 is the camera projection which contains both scal- 

ng and rotation parameters. � is the Kronecker product and I

s the identity matrix. t ∈ R 

2 ×1 is the camera translation vector. 

ased on Eq. (1) , our aim is to find the 3D pose Y whose 2D pro-

ection is required to be consistent with the given 2D pose X as 

uch as possible. 

.2. Sparse representation in 3D pose estimation 

It is an ill-posed problem to obtain 3D pose Y by solving 

q. (1) since there may be many feasible solutions in the math- 

matical sense. To alleviate this issue, SR model is introduced to 

nfer 3D pose Y from 2D projections X . With the SR model, an 

riginal 3D pose Y is approximated as a sparse linear combination 

f a set of basis poses: 

 = 

k ∑ 

j=1 

c j b j , (2) 
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here k is the number of basis poses. b j ∈ R 

3 N represents a ba- 

is pose, and c j is the corresponding coefficient. For the problem 

ormulation, we eliminate translation vector t in Eq. (1) by cen- 

ralizing the data and plug Eq. (2) into Eq. (1) , we have 

 = ( I N×N � M )( B c ) , (3) 

here c = [ c 1 , . . . c k ] 
T is a coefficient vector. Basis pose set B =

 b 1 , b 2 , . . . , b k } is named as overcomplete dictionary in the SR 

odel and learned from the training poses in the MoCap dataset. 

ince the dictionary B can be pre-learned by existing dictionary 

earning algorithms. The estimation problem of 3D pose from 2D 

oints is converted to the calculation of camera parameters M and 

oefficient vector c . 

Note that c is expected to be only a few nonzero entries un- 

er SR assumption. To enforce sparsity on coefficient c , � 1 -norm is 

ntroduced. Thus, the problem is modeled by the following opti- 

ization formulation: 

rg min 

M , c 
‖ c ‖ 1 s.t. X = ( I N×N � M )( B c ) . (4) 

Considering the observation noise, we relax the equation con- 

traint in Eq. (4) by adopting lagrangian multiplier as follows 

rg min 

M , c 

1 

2 

‖ X − ( I N×N � M )( B c ) ‖ 

2 
F + λ‖ c ‖ 1 , (5) 

here ‖ · ‖ 1 denotes the � 1 -norm and ‖ · ‖ F represents the Frobe- 

ius norm of a matrix. In Eq. (5) , the first term is the reconstruc-

ion error in the projection space, and the second term is the spar- 

ity regularization to induce a sparse 3D representation. λ > 0 is 

he balance parameter for two terms. 

. Our approach 

This section gives the detailed design of our JSL3d . We first ex- 

lore the representation learning with the implied structural infor- 

ation for the input 2D poses using an end-to-end autoencoder. 

hen, we introduce joint subspace learning for our 3D pose esti- 

ation using a latent representation capturing the spatial relations 

etween body joints and the 2D joint coordinates. Last, the opti- 

ization procedure is described. 

.1. Autoencoder for implicit structure capture 

To capture the spatial relations of body joints, we use an 

nd-to-end autoencoder to learn a robust representation by map- 

ing input 2D joints to a latent space. Autoencoder has shown 

romising performance in unsupervised learning [24] . In this work, 

e encode input 2D joints into a latent representation using 

n autoencoder with one hidden layer. Formally, given a train- 

ng set of 2D poses X = [ X 1 , X 2 , . . . , X M 

] , the standard training

rocedure of an autoencoder is to learn the parameter set � = 

 W enc , b enc , W dec , b dec } by minimizing the following square loss: 

∗ = arg min 

�

M ∑ 

m =1 

‖ X m 

− ˆ X m 

‖ 

2 
2 , (6) 

here M is the number of the training 2D poses. W enc ∈ R 

N l ×2 N 

nd W dec ∈ R 

2 N×N l denote the weight matrices for encoding and 

ecoding. b enc ∈ R 

N l and b dec ∈ R 

2 N are corresponding bias terms. 

 l is the number of hidden layer nodes. ˆ X m 

= f ( X m 

, �) represents 

he reconstructed inputs for the m th sample, where f (·) describes 

 mapping function of a complete autoencoder. For an autoencoder 

ith only one hidden layer, f (·) comprises an encoding and a de- 

oding processes as 

L m 

= E( X m 

) , 
ˆ X m 

= D ( L m 

) , (7) 
4 
here L m 

∈ R 

N l denotes the latent representation for the m th sam- 

le, termed as the implicit structure representation, which encodes 

he input 2D joints. E( X m 

) and D ( L m 

) are encode and decode func-

ions respectively, which are given as 

E( X m 

) = g( W enc X m 

+ b enc ) , 

D ( L m 

) = g( W dec L m 

+ b dec ) , 
(8) 

here g(·) represents a nonlinear activation function. Autoencoder 

an induce robust representation directly from input data while 

olding the original information. All joints of the original input 

ose X are encoded and preserved in each element of L m 

which re- 

ects implicit correlations between body 2D joints, instead of sim- 

ly the coordinates. 

.2. Joint subspace learning for 3D pose estimation 

After training the autoencoder, we obtain the encode function 

(·) , which can map a 2D pose X to the latent space and gener-

te implicit structure representation L . Based on the standard SR 

odel formulated by (5) , we map the given and the projected 2D 

ose into the latent space to produce implicit structure represen- 

ations. Note that the projected 2D pose is projected from the es- 

imated 3D pose (i.e., the 3D pose approximated by a linear com- 

ination. Then, we introduce an equality constraint to enforce im- 

licit structure representations of 2D poses in the latent space. As 

 result, Eq. (5) is reformulated as 

rg min M , c 
1 
2 
‖ X − ( I N×N � M )( B c ) ‖ 

2 
F + λ‖ c ‖ 1 

s . t . E( X ) = E(( I N×N � M )( B c )) , 
(9) 

here E( X ) = L and the result of E(( I N×N � M )( B c )) are the im-

licit structure representations for the input 2D pose and the esti- 

ated 3D pose respectively. The model (9) states that, in addition 

o the minimization requirement in the 2D projection space be- 

ween the given 2D pose and the projected 2D pose, the implicit 

tructure representation in the latent space is also required to be 

tted. The model (9) is the final objective function built upon the 

oint 2D space and the latent space to enable our optimization pro- 

edure. 

.3. Optimization 

We present an algorithm to implement our model (9) . The Aug- 

ented Lagrangian Methods (ALMs) is applied to solve the equality 

onstraint problem in model (9) . By introducing a dual variable Z , 

he Augmented Lagrangian function of (9) is denoted as 

 ( M , c , Z ) = 

1 
2 
‖ X − ( I N×N � M )( B c ) ‖ 

2 
F + λ‖ c ‖ 1 

 

μ
2 
‖ E( X ) − E(( I N×N � M )( B c )) ‖ 

2 
F 

 < Z , E( X ) − E(( I N×N � M )( B c )) >, 

(10) 

here μ > 0 is a penalty parameter. Then, the alternating direc- 

ion method of multipliers (ADMM) is used to update the values 

f variables M , c , Z by the minimizing following sub-problems un- 

il convergence: 

 

t+1 = arg min 

M 

L ( M 

t 
, c t , Z 

t ) , (11) 

 

t+1 = arg min 

c 
L ( M 

t+1 
, c t , Z 

t ) , (12) 

 

t+1 = Z 

t + μ(E( X ) − E(( I N×N � M 

t+1 )( B c t+1 ))) , (13) 

here t denotes the tth iteration. The sub-problems (11) and 

12) can be solved by using Accelerated Proximal Gradient (APG) 

nd the manifold optimization solver in the Manopt toolbox re- 

pectively. When c reaches the optimum, we can obtain an es- 

imation result of the 3D pose by calculating Eq. (2) . The algo- 

ithm with a maximum number � max of iterations is summarized 

n Algorithm 1 . 
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Algorithm 1 ADMM to solve the problem (10) . 

Input : X , B , W enc , b enc //The input 2D joints, the 3D basis dictio- 

naries, encode matrix and bias. 

Parameter : τ, λ, μ //The convergence tolerance, the hyper- 

parameters. 

Output : Y //The 3D human pose. 

1: initialize c , M , Z , τ, λ, μ. 

2: while ‖ r ‖ 2 > τ or � < � max do 

3: update M by (11). 

4: update c by (12). 

5: update Z by (13). 

6: calculate r = X − ( I N×N � M )( B c ) . // the estimation residual. 

7: update � = � + 1 . // iteration count. 

8: end while 

9: calculate Y by (2); 

Table 1 

The brief summary of four evaluation datasets. 

Dataset Size # of Actions # of Subjects 

Human3.6M [18] 1376 videos 15 11 

HumanEva-I [17] 56 videos 6 4 

CMU MoCap [25] 2605 videos 23 109 

MPII [26] 25,000 images N.A. N.A. 
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. Experimental setup and evaluation 

.1. Evaluation datasets and protocols 

The extensive evaluations of JSL3d are performed on three pub- 

ic datasets, i.e., Human3.6M [18] , HumanEva-I [17] , CMU Mo- 

ap [25] , and MPII [26] . The brief information about evaluation 

atasets is described in Table 1 . We conduct the quantitative ex- 

eriments on the first three datasets and qualitative experiments 

n the last. 

Human3.6M contains millions of paired (2D, 3D) poses with 

orresponding RGB images. It includes 15 activities performed by 

even actors in a configured indoor environment. The standard 

valuation protocol uses five subjects (S1, S5, S6, S7, and S8) and 

wo subjects (S9 and S11) for the training and testing, respec- 

ively [4,22] . This standard evaluation protocol is named protocol 

1. In some literature, six subjects (S1, S5, S6, S7, S8, and S9) are

sed for training and only S11 for testing [27,28] . This protocol is 

amed protocol #2. These two different protocols are found in the 

xisting literature. Moreover, for the training, there are also two 

ifferent ways. The one trains a universal model for all actions of 

he testing set [4] . In comparison, another trains special models 

or each testing class [23] . Two different evaluation protocols and 

raining ways are also considered in this paper. For protocol #1, 

e train a universal dictionary only using 3D poses from the train- 

ng data [4] . For protocol #2, following the same training protocol 

n [29] , we learn special dictionaries for each testing activity. 

HumanEva-I also contains images with corresponding poses 

2D, 3D) captured in indoor. It includes six actions performed by 

our actors. Following the standard evaluation protocol [4,10] , we 

rain our dictionary by using the training set of HumanEva-I , and 

est on the walking and jogging performed by three subjects (S1, 

2, and S3) from the validation set. Following the same training 

rotocol in [4,22] , we learn action-specific dictionaries for each 

ubject separately. 

CMU MoCap contains more than 3 million annotated 3D hu- 

an poses with corresponding synchronized videos performed by 

44 subjects. Following the standard evaluation protocol used in 

elated model-based approaches [9] , we conduct our experiments 

n eight categories (i.e., walk, run, jump, climb, box, dance, sit, 
5 
nd basketball). For each category, we randomly select six video 

equences and corresponding human pose annotations, in which 

hree sequences are used for dictionary learning and the remain- 

ng three for testing. The 2D human poses of CMU MoCap dataset 

re projected from 3D human poses by simulating an orthographic 

amera motion with 360-degree rotation [9] . Following the same 

raining protocol in [9] , we learn a single dictionary for all testing 

xamples. 

MPII includes over 410 activities of 40K people around 25K In- 

ernet images in various outdoor scenes. For each image, only cor- 

esponding 2D annotations are provided. 

.2. Implementation details 

In our implementation, similar to previous work [4,10] , we use 

he stacked hourglass model [3] for the 2D joints detection, which 

s pre-trained on the MPII and fine-tuned on Human3.6M . In 

ur model, the hyper-parameter μ controls the optimization step, 

hich is empirically set μ = 0 . 0 0 01 . The maximum iteration � max 

nd convergence tolerance τ are set to 10 0 0 and 0.0 0 01, respec-

ively. For the hyper-parameter λ, we conduct the ablation analysis 

n the next section. For camera parameter M and coefficient vec- 

or c in Eq. (11) , we initialize them as an identity matrix and zero 

ectors, respectively. 

The dictionary B is learned by the algorithm proposed in [9] . 

onsidering the different amount of training examples, we set dif- 

erent dictionary sizes. Specifically, the dictionary sizes are set to 

00 and 150 for the universal and action-specific dictionaries on 

uman3.6M , respectively. For HumanEva-I and CMU MoCap , k is 
et to 358 and 128, respectively. The dictionary learned from CMU 

oCap is used for the qualitative experiments of MPII [9] . 

To obtain the latent representation L m 

in Eq. (7) for input 2D 

oses, we train a simple autoencoder with one hidden layer in 

ytorch. The hidden layer contains the same number of nodes as 

he input layer, that is, N l = 2 ∗ N. We use PReLU as the activation

unction g(·) across our autoencoder architecture. The autoencoder 

odel is trained in an end-to-end pattern by using only 2D anno- 

ations in MPII . 

.3. Evaluation settings 

.3.1. Evaluation metric 

To evaluate the estimation quality of the 3D human pose, we 

ollow the two standard metrics, i.e., mean per joint 3D error and 

ean estimation error. The first one calculates the average Eu- 

lidean distance between the estimated 3D pose and ground-truth 

D pose over all the joints. The second is defined as the per joint 

D error up to a similarity transformation for two 3D poses. Fol- 

owing the standard evaluation protocol, we use the mean per 

oint position error and mean estimation error on Human3.6M . For 

umanEva-I , only mean estimation error metric is considered. 

.3.2. Comparison approaches 

We compare the performances of JSL3d with several existing 

ethods on Human3.6M and HumanEva-I . In this paper, we 

tudy the ability of the SR model with unsupervised features learn- 

ng for the 3D human pose estimation. Thus, for a fair compar- 

son, we mainly focus on comparing the competing approaches 

hat do not need paired 2D-3D data. To verify the effectiveness 

f JSL3d , we use the standard SR-based model (as formulated in 

q. (5) ) as the comparison baseline, denoted as “Base”. The same 

ictionary is used for both “Base” and JSL3d for a fair compari- 

on. Moreover, to validate the effectiveness of JSL3d , we also com- 

are our performance with several representative learning-based 

pproaches. Recently, some learning-based approaches have been 

evoted to exploring a unsupervised [30,32] or weakly supervised 
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trategy [35,36] for the 3D human pose estimation. These ap- 

roaches are also considered in the comparison. All compared ap- 

roaches may be using labeled (i.e., ground-truth) or detected 2D 

s input. Since the reconstruction performance depends on the ac- 

uracy of the input 2D annotations, we partition the results into 

round-truth 2D and detected 2D groups. 

.4. Results and analysis 

.4.1. Human3.6M 
The first comparative study is conducted on the Human3.6M 

ataset. We use the per joint 3D pose error and the mean estima- 

ion error metrics [18] in two evaluation protocols (i.e., protocol #1 

nd protocol #2) in this part. The first metric is widely applied for 

he evaluation of Human3.6M . All compared results are taken from 

he corresponding literature if there is no special explanation. 

Under protocol #1, the per joint 3D pose errors of the com- 

ared approaches are summarized in Table 2 . From the table, we 

bserve that the performance of JSL3d outperforms the Base in all 

ases and obtains better accuracy by more than 24% (ground-truth 

D) and 12% (detected 2D) improvements on average since the im- 

licit correlations of input 2D joints are captured by JSL3d . 

Moreover, compared to several approaches (including recent 

earning-based approaches) using the ground-truth 2D as their in- 

uts, JSL3d outperforms all of them in 12 out of 15 categories 

y more than 5% improvement on average. Although the de- 

ected 2D pose affects the performance due to inaccurate 2D es- 

imations, the lowest error is still achieved on average by JSL3d . 

n particular, JSL3d is superior to recent the model-based ap- 

roaches [4,11] (TPAMI 19’, NCAA 21’) and the learning-based ap- 

roach [30] (ICCV 21’) in the average performance of the test cate- 

ories. 

The mean estimation errors of JSL3d and representative works 

re reported in Table 3 . As expected, JSL3d still consistently per- 

orms better than Base in most cases and achieves a better im- 

rovement by more than 13% (ground-truth 2D) and 4% (detected 

D) on average. The improvement is marginal when using the de- 

ected 2D annotations as our inputs. The reason is that the inac- 

urate inputs lead to a misleading implicit representation. Com- 

ared to recent representative approaches, Table 3 shows none 

f the approaches dominate across all cases, while JSL3d yields a 

ower overall error. For example, JSL3d achieves superior perfor- 

ance in 9 out of 15 motions when using the ground-truth 2D as 

he inputs. On average, JSL3d achieves the best performance with 

ore than 4% (ground-truth 2D) and 5% (detected 2D) improve- 

ents. Moreover, compared to several unsupervised learning-based 

pproaches [32,35,36] , JSL3d still outperforms these approaches in 

ost categories and achieves a better performance improvement 

n average. 

Under protocol #2, the mean estimation errors are reported in 

able 4 . When using ground-truth 2D joints as input, we observe 

hat JSL3d outperforms Base and comparison approaches [27,28] in 

ost testing motions and more than 6% and 24% improvements on 

verage. Note that work [27,28] uses paired 2D-3D training data. 

hen using detected 2D joints as input, none of the comparison 

pproaches dominate across all categories. JSL3d still performs bet- 

er than them in 8 out of 15 categories and yields the lower esti- 

ation errors on average. Specifically, JSL3d attains a better recon- 

truction performance by more than 5% and 2% improvements than 

ase and other competitive approaches on average. 

.4.2. HumanEva-I 
We have also compared JSL3d with Base and several approaches 

n HumanEva-I . The mean 3D pose errors are reported in 
6 
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Table 3 

Mean estimation errors (mm) on Human3.6M under protocol #1. “P” denotes using paired 2D-3D training data, while “NP” denotes not using. Best results are marked in bold. 

Methods Direct. Discuss Eat Greet Phone Photo Pose Buy Sit SitDown Smoke Wait WalkDog Walk WalkPair Avg. 

Ground-Truth 2D 

(NP) 3DInterpreter [36] ∗ 56.3 77.5 96.2 71.6 96.3 106.7 59.1 109.2 111.9 111.9 124.2 93.3 - 58.0 - 88.6 

(NP) AIGN [35] 53.7 71.5 82.3 58.6 86.9 98.4 57.6 104.2 100.0 112.5 83.3 68.9 - 57.0 - 79.0 

(NP) Zhou et al. [4] 52.0 54.0 59.1 61.7 74.2 70.7 51.5 60.3 83.9 119.9 66.9 54.8 64.5 55.6 59.1 65.9 

(P) Morenonoguer et al. [29] 53.5 50.5 65.8 62.5 56.9 60.6 50.8 56.0 79.6 63.7 80.8 61.8 59.4 68.5 62.1 62.2 

(NP) Wang et al. [37] 48.4 57.1 49.8 54.8 57.2 50.9 51.6 76.0 109.8 55.3 74.5 57.0 40.2 61.3 47.2 59.4 

(NP) Jiang et al. [22] 51.2 48.1 46.1 57.4 51.2 58.2 50.1 47.6 61.7 82.1 48.6 53.5 54.4 50.3 54.5 53.8 

(NP) Base 52.2 53.9 49.6 58.3 58.6 71.9 51.1 65.0 63.9 91.2 54.5 56.2 58.5 50.9 58.5 58.9 

(NP) JSL3D 47.8 45.6 46.6 54.2 49.6 61.3 48.6 48.1 53.4 65.9 46.9 50.3 54.4 49.5 56.1 51.2 

Detected 2D 

(NP) Akhter and Black [14] † 199.2 177.6 161.8 197.8 176.2 86.5 195.4 167.3 160.7 173.7 177.8 181.9 176.2 198.6 192.7 181.1 

(NP) Zhou et al. [9] † 99.7 95.8 87.9 116.8 108.3 107.3 93.5 95.3 109.1 137.5 106.0 102.2 106.5 110.4 115.2 106.7 

(NP) 3DInterpreter [36] ∗ 78.6 90.8 92.5 89.4 108.9 112.4 77.1 106.7 127.4 139.0 103.4 91.4 - 79.1 - 98.4 

(NP) Rhodin et al. [32] - - - - - - - - - - - - - - - 98.2 

(NP) AIGN [35] 77.6 91.4 89.9 88 107.3 110.1 75.9 107.5 124.2 137.8 102.2 90.3 - 78.6 - 97.2 

(P) Morenonoguer [29] 69.5 80.2 78.2 87.0 100.8 76.0 69.7 104.7 113.9 89.7 102.7 98.5 79.2 82.4 77.2 87.3 

(NP) Bogo et al. [38] 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3 137.3 83.4 77.3 86.8 79.7 87.7 82.3 

(P) Lin et al. [39] 58.0 68.2 63.3 65.8 75.3 93.1 61.2 65.7 98.7 127.7 70.4 68.2 72.9 50.6 57.7 73.1 

(NP) Base 63.5 64.9 62.0 68.9 68.8 82.6 60.9 73.1 88.5 111.6 67.0 69.4 72.4 62.3 68.9 71.8 

(NP) JSL3D 59.4 63.9 57.7 68.1 66.5 79.4 62.9 57.6 82.1 102.9 65.8 72.4 68.4 60.6 67.2 68.9 

Note : The literature with marker † and ∗ denotes that corresponding results are obtain from Bogo et al. [38] and Tung et al. [35] , respectively. 

Table 4 

Mean estimation errors (mm) on Human3.6M under protocol #2. “P” denotes using paired 2D-3D training data, while “NP” denotes not using. Best results are marked in bold. 

Methods Direct. Discuss Eat Greet Phone Photo Pose Buy Sit SitDown Smoke Wait WalkDog Walk WalkPair Avg. 

Ground-Truth 2D 

(P) Yasin et al. [27] 60.0 54.7 71.6 67.5 63.8 96.9 61.9 55.7 73.9 110.8 78.9 67.9 67.9 89.3 47.5 70.5 

(P) Zhou et al. [28] 59.1 63.3 70.6 65.1 61.2 68.4 73.2 83.7 84.9 72.7 84.3 81.9 75.1 57.9 49.6 70.0 

(NP) Base 51.2 50.3 51.8 61.1 47.8 73.3 59.3 43.9 62.1 75.6 58.9 62.2 54.1 40.3 57.4 56.6 

(NP) JSL3D 45.6 42.9 52.0 55.70 46.5 67.5 48.4 61.6 62.5 68.3 55.2 50.2 49.4 39.0 52.9 53.2 

Detected 2D 

(P) Yasin et al. [27] 88.4 72.5 108.5 110.2 97.1 81.6 107.2 119.0 170.8 108.2 142.5 86.9 92.1 165.7 102.0 108.3 

(P) Zhou et al. [28] 67.9 65.4 77.7 69.3 68.9 75.9 86.5 105.3 81.5 86.3 73.6 102.3 59.1 69.8 52.6 76.1 

(NP) Chen and Ramanan [33] 71.6 66.6 74.7 79.1 70.1 67.6 89.3 90.7 195.6 83.5 93.3 71.2 55.8 85.8 62.5 82.7 

(P) Nie et al. [40] 62.8 69.2 79.6 78.8 80.8 72.5 73.9 96.1 106.9 88.0 86.9 70.7 71.9 76.5 73.2 79.5 

(P) Morenonoguer [29] 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 103.5 74.8 92.6 69.6 71.5 78.0 73.2 74.0 

(NP) Base 56.1 56.6 60.1 69.1 56.9 74.0 103.2 147.5 61.8 96.0 90.6 69.5 60.3 70.1 65.8 75.8 

(NP) JSL3D 50.8 51.6 58.0 62.6 53.2 63.6 109.7 144.5 65.6 82.3 89.6 59.4 57.2 68.7 62.4 71.9 

7
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Table 5 

Mean estimation errors (mm) on HumanEva-I . “P” denotes using paired 2D-3D train- 

ing data, while “NP” denotes not using. Best results are marked in bold. 

Method Walking(C1) Jogging(C1) 

S1 S2 S3 S1 S2 S3 Avg. 

Ground-truth 2D 

(P) Morenonoguer [29] 28.4 27.8 31.7 47.8 27.8 30.2 37.1 

(NP) SDM3d [11] 30.0 30.0 32.3 27.9 27.1 31.9 29.9 

(NP) Jiang et al. [22] 21.5 20.4 20.0 21.5 21.5 21.9 21.1 

(NP) Base 46.2 32.5 46.7 22.0 15.4 24.5 31.2 

(NP) JSL3D 16.1 13.0 33.6 21.7 14.4 17.2 19.3 

Detected 2D 

(NP) Yasin et al. [27] 35.8 32.4 41.6 46.6 41.4 35.4 38.9 

(NP) Wang et al. [10] 40.3 37.6 37.4 39.7 36.2 38.4 38.3 

(NP) Zhou et al. [4] 34.3 31.6 49.3 48.6 34.0 30.0 37.9 

(P) Katircioglu et al. [23] 29.3 17.9 59.5 - - - 35.6 

(NP) Base 51.0 55.0 68.2 35.6 37.1 52.2 49.9 

(NP) JSL3D 23.9 28.2 55.8 32.1 32.0 45.6 36.7 

Fig. 3. Quantitative results on CMU MoCap dataset. (a) Mean 3D estimation errors on different testing motions. (b) The distribution of mean 3D estimation errors. The y-axis 

is the percentage of the testing examples whose estimation errors are less than the corresponding x-axis value. (c) Mean 3D estimation errors on various standard deviations 

of Gaussian noise. 
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able 5 . The figures in the table are cited from the original pa-

ers. Similar to the evaluation on Human3.6M , we divide all com- 

ared results into two groups, i.e., ground-truth 2D and detected 

D. Similar to the evaluation results on Human3.6M , JSL3d boosts 

he performance of Base in all categories of HumanEva-I . Such 

bservations confirm that the effectiveness of JSL3d is supported by 

 learned implicit representation of the input 2D pose. In particu- 

ar, compared to Base, JSL3d achieves better performance with more 

han 38% (ground-truth 2D) and 26% (detected 2D) performance 

mprovements, respectively. 

In addition, JSL3d achieves the best performance on average 

ompared to all model-based and several representative learning- 

ased approaches. Specifically, when using the ground-truth 2D as 

he inputs, JSL3d outperforms all comparison algorithms in 4 out of 

 categories and obtains more than 8% improvement on average. 

sing the detected 2D poses as the inputs, JSL3d still achieves the 

est performance in 4 out of 6 categories with more than 3% im- 

rovement on average compared to the existing model-based ap- 

roach [4] (TPAMI 19’). When comparing with deep learning-based 

pproaches [23] (IJCV 18’), which also aims to maintain the implicit 

tructure of poses, JSL3d still outperforms this approach in 2 out of 

 categories. Note that the paired 2D-3D data are required in the 

ork [23] , which are not needed in JSL3d . 

There are exceptions in a few cases, such as the “Walking”

ategory of S3. The performance of JSL3d is not very high. We 

ound that some annotations with outliers exist in this cate- 

ory. Since JSL3d learns a robust representation from the input 

D joints directly, the outliers impact the accuracy of implicit 

epresentation. 
8 
.4.3. CMU MoCap 

Although the few works evaluate their approach on CMU Mo- 

ap, the work [9] ) still reports the experiment results on this 

ataset. Since the work [9] is closely related to ours, we also eval- 

ate our approach on this dataset. In the following comparisons, 

Base+” is an alternative optimization solution of the standard SR 

odel, which is also reported in literature [9] . All comparison ap- 

roaches in this dataset do not use paired 2D-3D training data. 

The first experiment is conducted on different motions, 

s shown in Fig. 3 (a). JSL3d outperforms baseline approaches 

nd [9] across most motions. We observe that in categories with 

ess depth ambiguity (e.g., walk), JSL3d shows more significant im- 

rovements due to capturing more accurate joint implicit struc- 

ure. We further present the percentage of mean 3D estimation er- 

or ranges of all testing examples, as shown in Fig. 3 (b). As seen

rom the figure, JSL3d performs better estimation on most test- 

ng examples than comparison approaches. Significantly, the per- 

entage of JSL3d reaches 60% when the mean estimation errors are 

maller than 50 (mm). This percentage is reduced to around 42% of 

omparison approaches. To analyze the robustness of JSL3d against 

oise, we evaluate JSL3d by adding Gaussian noises with different 

tandard deviations on inputted 2D joints. The results are reported 

n Fig. 3 (c). The 3D estimation errors of JSL3d are consistently lower 

han the comparison approaches across all noise levels. 

Considering that the deformation of body joints leads to dif- 

erent degrees of depth ambiguity, we present the estimation per- 

ormance of approaches on different joints. The mean estimation 

rrors on different body joints are reported in Table 6 . We ob- 

erve that JSL3d consistently yields lower estimation errors across 
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Table 6 

Mean 3D estimation errors (mm) of different joints on CMU MoCap dataset. Note that RH, RK, RA, LH, LK, RE, RW, LS, LE, and LW denote right hip, right 

knee, right ankle, left hip, left knee, right elbow, right wrist, left shoulder, left elbow, and left wrist, respectively. 

Methods Pelvis RH RK RA LH LK LA Neck Head Spine RE RW LS LE LW Avg. 

Base 40.0 48.4 59.8 69.5 48.2 61.9 74.9 29.0 46.6 41.6 56.6 89.8 46.8 64.3 88.8 57.8 

Base + 41.4 48.9 62.4 70.1 49.1 66.0 77.8 26.8 47.7 39.2 60.0 86.2 45.9 66.1 83.9 58.1 

Zhou et al. 35.3 45.5 53.3 64.2 48.3 53.8 68.1 25.6 44.5 39.9 58.0 76.7 43.7 61.0 75.7 52.9 

JSL3D 36.7 45.4 52.4 67.7 44.2 55.3 72.2 24.6 40.7 38.5 54.5 77.1 43.1 54.2 75.2 52.1 

Table 7 

Mean running time (ms) of different motions on CMU MoCap dataset. 

Methods Walk Run Jump Climb Box Dance Sit Basketball Avg. 

Base 20.52 20.38 19.80 18.23 27.16 23.89 33.29 19.28 22.82 

Base + 37.62 40.0 40.23 54.64 48.03 54.54 60.65 48.72 48.05 

Zhou et al. 1017.56 752.97 955.42 839.22 771.54 801.78 801.78 838.95 855.09 

JSL3D 410.75 517.61 591.95 608.02 594.06 761.80 638.48 561.76 585.93 

Fig. 4. Qualitative experiments on MPII . (a) The successful estimation results. (b) The failure estimation results. 
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ll joints than Base and Base+, and more than 9% improvement 

n average. Compared to [9] , JSL3d achieves better performance 

n 10 out of 15 joints and the average error. Since self-occlusion 

nd severe deformation seldom occur in some human body joints 

e.g., head and elbow), the depth ambiguity of these joints is rel- 

tively not serious. As we expected, JSL3d shows more significant 

mprovements in these joints since the more accurate joint im- 

licit structure is learned. Specifically, the JSL3d achieves a better 

econstruction performance by more than 8% improvement on the 

head” joint. 

It seems that the margin between our work and [9] is narrow 

n a few cases, such as the estimation error of “Dance” in Fig. 3 (a)

nd the average error in Table 6 . However, the execution speed of 
9

SL3d is faster than [9] under the same running environment con- 

guration. The mean running times on different testing motions 

re presented in Table 7 . The experiments are implemented in 

ATLAB on a laptop with an Intel i7 2.30 GHz CPU, an Nvidia RTX 

060 GPU, and 32 GB RAM. It is not surprising that “Base” runs the 

astest since it is a standard SR-based model. However, the estima- 

ion performances of “Base” are often unsatisfactory. Running time 

ncreases when more complex optimization strategies (i.e., “Base+”

nd [9] ) are used. The work [9] handles complex body variability 

sing a convex optimization strategy during the model inference. 

n this paper, we use a pre-trained autoencoder to obtain the im- 

licit structure of the human body, which relieves the stress of the 

ptimization process, resulting in reduced running time. Specifi- 
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Fig. 5. Sensitivity of the hyper-parameter λ on Humen3.6M, HumanEva-I, and CMU MoCap datasets, respectively. 

Fig. 6. Comparison of 2D pose RMSE between Base and JSL3d . (a) RSME values during one iteration. (b) RSME values distribution of all testing examples. 
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ally, as seen from Table 7 , compared to [9] , JSL3d has less run-

ing time in all motions, with an average running time reduction 

f more than 31%. 

.4.4. MPII 

In the following, we explore the applicability of JSL3d on the 

PII dataset. For each input 2D image, we locate its 2D joints 

eat map using the stacked hourglass 2D detector [3] . Since MPII 
oes not provide any 3D annotation, a dictionary learned from 

uman3.6M is adopted for the inference of 3D poses. The estima- 

ion results with various activities are presented in Fig. 4 , where 

ach row includes two examples. We can see that JSL3d is able to 

roduce reasonable 3D human poses from an image for a wide 

ariety of viewpoints and activities, as the successful examples 

hown in Fig. 4 (a). The failed examples shown in the Fig. 4 (b) are

ainly because heavy occlusions cause incorrect 2D detection and 

ome extreme activities. 

.4.5. Ablation study 

To explore the impacts of λ in Eq. (10) , we have further con- 

ucted ablation experiments using different datasets. In addition, 

he effectiveness of JSL3d during optimization is also studied. 

For the ablation analysis, using ground-truth 2D poses of test- 

ng samples as inputs, we tested the value of the parameter λ in 

he range of [0, 5]. The ratios of the mean estimation errors to λ
or Human3.6M , HumanEva-I , and CMU MoCap are presented in 

ig. 5 (a), (b), and (c), respectively. The variation in λ leads to the 

recision fluctuation of 3D estimation, while the mean estimation 

rrors reach small values when λ is in the range of [0, 1] both 

or the three datasets. Thus, we fix λ = 0 . 3 for Human3.6M and

umanEva-I , λ = 0 . 1 for CMU MoCap in the experiments. 

In addition, to verify the effectiveness of the proposed scheme, 

e have conducted convergence experiments. Compared to the 
10 
ase built upon on the standard SR model (5) , our model (9) im-

oses the implicit structure constraint of a latent space on the 

tandard model. It is observed that after the convergence of 

he Base, JSL3d continues to iterate to find a smaller Root Mean 

quare Errors (RSME) under the same tolerance value, as shown 

n Fig. 6 (a). Moreover, the RMSE distribution of all testing exam- 

les after algorithms convergence is shown in Fig. 6 (b). Note that 

he y-axis is the percentage of the testing cases whose RMSE is 

ess than the x-axis value. As expected, JSL3d achieves lower RMSE 

alues than Base. 

. Conclusion 

In this paper, we presented JSL3d , a novel joint subspace 

earning approach with implicit structure supervision based on 

he SR model, for precisely estimating human 3D poses. Instead 

f imposing a pose structure learning module on the optimiza- 

ion procedure, JSL3d directly obtains the spatial relations of body 

oints through an autoencoder pre-trained on 2D joints of the hu- 

an body. Then, JSL3d combines original input 2D joints, and the 

earned implicit representation capturing the spatial relations of 

ody joints as supervisions for the SR model, in which the opti- 

ization is processed on both the 2D and the latent spaces. Such 

trategies enable the standard SR model to capture the implicit 

tructure for input signal without introducing additional compu- 

ational cost, which may be able to extend to other SR-based 

ignal processing applications. We have evaluated JSL3d on four 

arge-scale datasets (i.e., Human3.6M , HumanEva-I , CMU MoCap 
nd MPII ) with the comparison of several well-recognized bench- 

arks. The experiment results demonstrate that JSL3d shows supe- 

ior overall performance across all quantitative evaluations com- 

ared with the state-of-art model-based approaches and achieves 

ompetitive performance compared with several representative 
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earning-based approaches. In our approach, the projection ambi- 

uity is a critical factor that affects the structure capture accuracy 

f the 2D human pose. To alleviate this issue, in the future, we may 

everage context information of the input image to explore joint 

epth that may be a useful cue for the pose structure capture. 
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